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Abstract: Compared to the continuum-based methods, the discrete element method (DEM) may reflect the effects of 
granular characteristics (such as the mean particle size d50, coefficient of uniformity Cu and coefficient of curvature Cc) on 
the behavior of soil mass. Hence, in this work, the rolling resistance linear (RRL) contact model in combination with the 
circular particles in the DEM, as a simplified approach of reflecting actual shapes of soil particles, is utilized to assess the 
effects of granular characteristics on the ultimate bearing capacity pu of the ground. Furthermore, a large amount of DEM 
simulations of ground with various granular characteristics are conducted, so that a dataset of relating the pu to the 
granular characteristics for machine learning (ML) can be achieved. Based on the dataset of DEM simulations, three ML 
algorithms, namely multiple linear regression (MLR), artificial neural networks (ANN) and extreme gradient boosting 
(XGBoost), are applied to training the prediction models of pu. The research results reveal that the footing rotations and 
the asymmetric failure pattern of ground in the DEM simulations are largely attributed to the granular characteristics of 
soil mass. For a ground composed of soil particles with larger d50 and larger Cu, the pu of the ground generally tends to 
be higher and the thickness of developed shear band tends to be greater. For a ground composed of soil particles with 
larger d50 but smaller Cu, the asymmetric failure pattern of ground is more legible and the predicted pu tends to be smaller. 
It was also found that among the investigated ML algorithms, the MLR algorithm may provide an explicit model for the pu, 
while ANN and XGBoost algorithms offer higher prediction accuracy. 

Keywords: Ultimate ground bearing capacity, Footing rotation, Asymmetric failure pattern, Discrete element 
method, Machine learning. 

1. INTRODUCTION 

The ultimate ground bearing capacity is a critical 
issue in geotechnical engineering, as it directly impacts 
the stability and safety of building footings. It is well 
known that general shear failure typically occurs for 
those soils with low compressibility, and this failure 
mode is characterized with a continuous failure surface 
between the footing edges and the ground surface and 
ground surface heave either on both sides or any one 
side of the footing. The influential factors of ultimate 
bearing capacity and failure pattern of ground can be 
categorized into the intrinsic types and the extrinsic 
types. The intrinsic types of the influential factors 
include the strength parameters, the anisotropy of soil 
mass (e.g. Azami et al., 2009; Veiskarami and 
Shokoohi, 2023) and the inherent spatial variability of 
soil properties (e.g. Wu et al., 2020; Krishnan and 
Chakraborty, 2022), while the extrinsic types of the 
influential factors include the types of footings (i.e. 
flexible or rigid), the geometries and the burial depths 
of the footings, and the characteristics of the loads  
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transferred to the footings (i.e. eccentric or inclined 
loading) (e.g. Krabbenhoft et al., 2014). 

Continuum-based methods have been the most 
popular analysis methods for geotechnical problems 
(Chen et al., 2014). When applying the 
continuum-based methods to the ground bearing 
capacity analysis, we may find the analytical 
approaches such as the Prandtl-Reissner solution and 
Terzaghi’s solution as well as the numerical 
approaches such as the displacement finite element 
method (FEM) (e.g. Wang et al., 2019; Chen et al., 
2020; Tang et al., 2022; Chen et al., 2023; Lyu et al., 
2024) and finite element limit analysis (e.g. Shiau et al., 
2003; Xiao et al., 2018). Some research efforts have 
been devoted to the asymmetric failure pattern of 
ground caused by random properties or anisotropy of 
soils and the corresponding bearing capacity using the 
continuum-based numerical methods (e.g. Loukidis et 
al., 2008; Li et al., 2015; Gao et al., 2020; Fathipour et 
al., 2022). 

Alternatively, the particle-based methods such as 
the Discrete Element Method (DEM) can be applied to 
the ultimate bearing capacity analysis of ground, as 
these methods may present the micro-interactions and 
microscopic mechanisms of particles, including the 
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movements, rotations, and contact forces of particles 
(e.g. Bhandari and Han, 2009; Fu et al., 2016; Yin and 
Wang, 2021). Figure 1 illustrates a rigid strip footing 
resting on the ground composed of soil particles 
subjected to centric vertical load. It is readily observed 
that if the footing is not restrained (as depicted in 
Figure 1(a)), it may experience not only the settlement 
but also the rotation (!) during the loading process (as 
depicted in Figure 1(b) and Figure 1(c)), due to the 
randomness of the soil particles beneath the footing. 
Hence, it is of practical importance to assess the 
footing rotation and the eventual failure pattern of the 
ground using DEM (e.g. Liu et al., 2025). 

In the past decade, it has been witnessed that the 
machine learning (ML) has become a powerful tool of 
extracting information, discovering potential pattern 
and deriving prediction model from complex data in 
various applications, including the prediction of the 
ultimate ground bearing capacity (e.g. Pan et al., 2024; 
Behera and Patra, 2018; Roy and Shree, 2024). At 
present, several researchers have integrated ML with 
the DEM. Typical applications include: using ML to 
assist in calibrating microscopic parameters in DEM 
simulations (e.g. Wu et al., 2026); employing ML to 
predict soil bearing capacity from in-situ borehole data, 
then using DEM to model and validate the 
ML-predicted soil bearing capacity (e.g. Thapa et al., 
2025). However, there are few studies that use DEM to 
perform multiple ground simulations (to generate 
datasets) and then use ML to train prediction models 
for pu. The randomness of soil particle spatial 
distribution and the asymmetry of grounds are 
particularly suitable to be captured by DEM simulations. 
Furthermore, the applicability of various ML models 
when combined with DEM-derived ground simulation 
results requires further evaluation. In summary, a 
critical research gap remains—specifically in the 
integration of advanced ML techniques and the DEM 
simulation for analyzing ground bearing capacity 
problems—to enhance the accuracy of pu predictions. 

The costs of performing a large amount of in-situ 
tests or laboratory tests and retrieving data from these 
tests are generally very high, the DEM simulations for 

ML predictions, however, appear to be appealing in 
that it may produce sufficient data economically in short 
time. Hence, DEM simulations are implemented here 
for generating the data required by ML models of 
ultimate ground bearing capacity. The innovation of this 
research mainly lies in two aspects; first, a novel 
modification factor χp is proposed to quantify the 
reduction of pu induced by particle characteristics of the 
ground; second, based on the MLR model, an explicit 
expression of pu is developed that accounts for both 
gradation parameters (i.e., the ratio of constant footing 
width B to the mean particle size d50 (B/d50), coefficient 
of uniformity (Cu), and coefficient of curvature (Cc)) and 
strength parameters (i.e., friction coefficient (µ) and 
rolling resistance coefficient (µr)). The primary 
objectives of this study are defined as follows: (1) To 
investigate the effects of soil particle gradation 
characteristics (B/d50, Cu, Cc) and strength parameters 
(µ, µr) on the pu of ground, footing rotation, and 
asymmetric failure pattern of ground using DEM. (2) To 
propose a modification factor χp to correct the 
overestimation of pu by continuum-based methods 
considering soil particle gradation effects. (3) To 
construct a dataset of pu based on DEM simulations, 
then develop and compare three ML models (MLR, 
ANN, XGBoost) for predicting the pu, and quantify the 
contribution of each soil parameter to pu through 
feature importance analysis. 

2. ROLLING RESISTANCE LINEAR CONTACT 
MODEL FOR GROUND SIMULATION 

2.1. Ground Model of DEM 

Experimental researches revealed that the soil 
particle shape (or angularity) may affect the ultimate 
bearing capacity and failure pattern of ground to some 
extent (e.g. Raja et al., 2023), and hence simulation of 
the actual particle shape in DEM simulations is crucial 
to accurate prediction on the deformation and failure of 
ground. Modeling all the particles with exact shapes 
and positions in a geotechnical system, however, is 
infeasible. One type of solutions to that difficulty is to 
generate the soil mass in a random way by following 
the distribution characteristics of soil particles; the 

 

Figure 1: Settlement and rotation of a rigid footing resting on the ground composed of soil particles subjected to centric vertical 
load: (a) Before applying the load; (b) When the applied load is relatively small, the settlement and the rotation (!) of the footing 
are not significant; (c) When the applied load reaches the ultimate bearing capacity pu, the footing may experience significant 
settlement and rotation (!u). 
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other type of solutions is to use a simplified model with 
simple particle shapes which may reflect the effects of 
complicated particle shapes to some extent. As one of 
the second type of solutions, the Rolling Resistance 
Linear (RRL) contact model disclosed that it may reflect 
the rolling resistance of angular particles by solely 
resorting to the circular particles (e.g. Yin and Wang, 
2021), and hence it is employed here. 

In this study, the Multi-layer with Under compaction 
Method (UCM) is utilized to generate the comparatively 
uniform and dense ground model in DEM simulations 
(e.g. Jiang et al., 2003). Figure 2 illustrates the 
geometries and boundary conditions of a rigid footing 
resting on the ground of dense soil, which is a 

U-shaped clump composed of pebbles. To simulate a 
1:10 scale model of ground in DEM, the acceleration of 
gravity is set to be 10g (e.g. Kimura et al., 1985). Those 
model parameters of DEM are tabulated in Table 1, 
except for the gradation parameters (d50, Cu, Cc) and 
strength parameters (µ, µr) of particles of ground which 
will be elaborated later. 

2.2. Particle Parameters of Ground Model in DEM 

The influence of particle size on the ground bearing 
capacity can be indirectly reflected by the shear band 
thickness, since the shear band thickness is generally 
proportional to the particle size d50 (e.g. Toyosawa et 
al., 2013). Utilization of only a single particle size 

 

Figure 2: Ground model and the U-shaped footing clump in DEM simulation. 

Table 1: Model Parameters in 2D Simulations of DEM 

Category Symbol  Meaning (unit) Value 

Model geometry  B Width of the footing (mm) 20 

RRL contact model 
 

E* Effective modulus of deformability (MPa) 15 

k* Normal-to-shear stiffness ratio 1.5 

Soil particle 
 
 

ζs Local damping coefficient 0.7 

ρs Density (kg/m3) 2700 

ntar Target porosity 0.13 

Pebble of the clump 
 
 
 

dcp,min Minimum diameter (mm) 0.78 

dcp,max Maximum diameter (mm) 0.92 

ζcp Local damping coefficient 0.7 

ρcp Density (kg/m2) 2700 

Loading particle 
 
 
 
 
 
 
 

vfixed Fixed loading velocity (mm/s) 0.5 

dp Diameter (mm) 0.72 

ζp Local damping coefficient 0.7 

ρp Density (kg/m3) 2700 

cbten LCB contact model tensile strength (N) 10300 

cbshear LCB contact model shear strength (N) 10300 
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parameter (d50), however, cannot fully reflect the 
effects of complex characteristics (such as the span 
and continuity) of soil particle gradation. It is well 
known that the real soils may more or less possess 
certain span of particles, so the voids formed by large 
particles may be filled with the small particles, 
contributing a lot to the interlocking among the particles. 
Hence, it is necessary to study the impact of more 
detailed gradation parameters on the ground bearing 
capacity. The coefficient of uniformity Cu (=d60/d10) 
describes the span of the gradation, while the 
coefficient of curvature Cc (=d30

2/(d10×d60)) signifies the 
continuity of the gradation. A total of 16 test groups, as 
tabulated in Table 2, are designed by changing B/d50, 
Cu, Cc, µ and µr. It is noted that the median particle size 

dmdn in Table 2 is the average value of the maximum 
and minimum particle sizes (i.e. dmdn =(dmin+dmax)/2). 
Figure 3(a) shows the particle gradation curves for the 
test groups of D1, D2-U1, D2-U2(1~6), D2-U3-C2, and 
D3 in Table 2, while Figure 3(b) illustrates the three 
particle gradation curves of D2-U3 in Table 2 by fixing 
B/d50 and Cu but varying Cc. 

It is not difficult to imagine that as the ground in 
DEM simulation is composed of randomly distributed 
particles, it generally presents the asymmetric failure 
pattern (or shear bands) at the failure stage, and even 
for the same test group, the calculated pu of ground 
with soil particles created by different random seeds 
may vary in a range of [pu,min, pu,max]. To demonstrate 
this phenomenon, 27 DEM tests due to different 

Table 2: Particle Parameters for Ground Bearing Capacity Analysis of DEM Simulations (B=20mm) 

Test group B/d50 Cu Cc dmin 
(mm) 

dmax 
(mm) 

dmdn 
(mm) µ  µ r Number of particles 

D1 

D1-U1 

20.83 

1.25 1.01 0.76 1.14 0.95 

0.5 0.5 

24249 

D1-U2 1.76 1.04 0.40 1.20 0.80 31921 

D1-U3 2.67 1.05 0.35 1.25 0.80 43585 

D2 

D2-U1 

31.25 

1.25 0.98 0.50 0.76 0.63 55065 

D2-U2 

D2-U2(1) 

1.76 1.09 0.20 0.80 0.50 79330 

D2-U2(2) 
0.3 

0.3 

D2-U2(3) 0.5 

D2-U2(4) 
0.5 

0.1 

D2-U2(5) 0.3 

D2-U2(6) 0.7 0.5 

D2-U3 

D2-U3-C1 

2.67 

0.51 

0.20 1.00 0.60 

0.5 0.5 

108168 

D2-U3-C2 1.04 90812 

D2-U3-C3 2.01 92640 

D3 

D3-U1 

41.67 

1.25 0.99 0.38 0.56 0.47 100019 

D3-U2 1.76 1.03 0.10 0.60 0.35 154411 

D3-U3 2.67 1.04 0.10 0.70 0.40 199639 

 

 

Figure 3: Particle gradation curves of granular soils in the DEM simulations: (a) Test groups of D1, D2-U1, D2-U2(1~6), 
D2-U3-C2 and D3; (b) Test groups of D2-U3. 
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random seeds are created for each test group, so a 
total of 432 (=16×27) DEM tests on the ultimate 
bearing capacity of ground are carried out. 

3. ANALYSIS ON ULTIMATE BEARING CAPACITY 
OF GROUND USING DEM SIMULATIONS 

3.1. Ultimate Ground Bearing Capacity Results of 
DEM Simulations 

By arranging the measurement circles in DEM 
simulations (as shown in Figure 4(a)), the porosity of 
the solution domain covered by the measurement 
circles can be attained. Figure 4(b) illustrates the 
porosity field calculated by the Kriging interpolation 
method for the ground model of test group of D2-U2(1). 
It is observed that there is a general increasing trend of 
the porosity of ground from the deep layer to the top 
layer and the particle distribution in each layer of the 
ground is more or less asymmetric, conforming to 
realistic grounds. 

Evidently, the randomness of the particle 
distribution of ground may definitely contribute a lot to 
the characteristics of the failure pattern as well as the 
ultimate bearing capacity pu of ground. In addition, it is 
interesting to investigate the rotation angle α (in 
degrees) (with the positive value signifying the 
clockwise rotation) of the footing during the loading 
process, so the relationship between the ultimate 
rotation angle αu and the corresponding pu can be 
evaluated. To fulfill the purpose, a total of 432 (=16 test 
groups × 27 random seeds/test group) DEM tests on 
the ultimate ground bearing capacity are carried out, so 
432 pairs of (pu, αu) are calculated. Furthermore, the 3σ 
method is applied to these 432 pairs of (pu, αu), and 5 
outliers (1 in D2-U2(1), 3 in D2-U2(6) and 1 in 
D2-U3-C3) are removed, so 427 pairs of (pu, αu) are 
utilized for training the ML models. 

Figure 5 illustrates two footing bottom 
pressure-settlement (p-uy/B) curves obtained from the 
test group of D2-U2(1) characterized by a prominent 
peak value (pu) and a post-peak strain softening stage. 
It is noteworthy that among 27 curves produced from 
different random seeds in the test group of D2-U2(1), 
the two curves correspond to the one with the minimum 

peak value (pu,min=416.7kPa) and the one with the 
maximum peak value (pu,max=559.4kPa), respectively. 
After removing the outliers, 26 pairs of (pu, αu) from the 
test group of D2-U2(1) are provided in Table 3. 

 

Figure 5: p-uy/B curves with pu,min and pu,max from 27 different 
random seeds in DEM simulations for test group D2-U2(1). 

Table 3 Results of (pu, αu) Obtained from the Test 
Group of D2-U2(1) 

Test no. Due to Random 
Seed 

D2-U2(1) 

pu (kPa) αu (°) 

1 515.3 2.5 

2 434.3 4.0 

3 488.7 0.8 

4 517.5 2.1 

5 504.0 2.5 

6 476.9 −3.1 

7 512.7 −2.8 

8 501.1 4.4 

9 523.8 −1.8 

10 495.4 −2.4 

11 448.9 −3.4 

12 556.8 −3.0 

13 448.1 4.2 

 

Figure 4: (a) Layout of measurement circles in the ground of test group D2-U2(1); (b) Initial porosity field of the entire ground of 
test group D2-U2(1). 
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14 474.4 −7.3(outlier) 

15 553.8 2.1 

16 432.3 −3.2 

17 559.4 −2.7 

18 511.4 −1.0 

19 474.7 −5.1 

20 490.5 −3.8 

21 507.8 2.3 

22 505.1 3.0 

23 530.2 1.2 

24 416.7 −1.0 

25 449.0 3.7 

26 535.3 2.3 

27 455.3 −2.5 

 

The statistics (including the minimum value, the 
maximum value, the average value, and standard 
deviation) of the particle gradation parameter (B/d50, Cu, 
Cc) and strength parameters (µ, µr) of 427 DEM tests 
are summarized in Table 4. To measure the linear 
correlation between various parameters and pu, the 
Pearson correlation coefficient ρc can be utilized: 
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where Xi and Yi denote the ith of the total nv values of X 
and Y, respectively. It is known from Table 4 that there 
is certain negative correlation between B/d50 and pu, 
while other parameters are more or less positively 
correlated with pu. Among the parameters positively 

Table 4: Statistics of the Particle Parameters for 427 DEM Tests  

Category Symbol  Meaning  Min value Max value Average Value Standard Deviation ρc (with pu) 

Gradation 
parameter 

 

B/d50 
Dimensionless mean 

particle size (B=20mm) 20.83 41.67 31.25 6.42 −0.15 

Cu Coefficient of uniformity 1.25 2.67 1.95 0.52 0.39 

Cc Coefficient of curvature 0.51 2.01 1.08 0.27 0.05 

Strength 
parameter 

µ Friction coefficient 0.30 0.70 0.49 0.08 0.74 

µr 
Rolling resistance 

coefficient 0.10 0.50 0.45 0.11 0.65 

 
Table 5: Statistics of pu for 427 Tests of DEM 

Test group Min value (pu,min) Max value (pu,max) Average value (
up ) Standard deviation ρc (with |αu|) χp 

D1 

D1-U1 364.81 552.41 429.44 48.07 −0.43 0.660 

D1-U2 442.49 650.69 538.34 49.72 −0.53 0.680 

D1-U3 487.88 632.84 571.99 35.25 −0.50 0.771 

D2 

D2-U1 313.44 447.98 386.19 31.64 −0.60 0.700 

D2-U2 

D2-U2(1) 416.69 559.43 494.04 39.00 −0.27 0.745 

D2-U2(2) 161.89 187.29 171.75 6.82 −0.05 0.864 

D2-U2(3) 192.13 233.25 213.93 10.17 0.01 0.824 

D2-U2(4) 167.99 197.77 180.80 7.45 0.03 0.849 

D2-U2(5) 297.26 387.88 347.70 22.80 0.16 0.766 

D2-U2(6) 638.26 785.05 704.31 32.32 −0.42 0.813 

D2-U3 

D2-U3-C1 431.18 574.79 499.74 38.41 −0.33 0.750 

D2-U3-C2 452.77 588.67 513.20 29.37 −0.40 0.769 

D2-U3-C3 447.58 587.12 519.60 33.47 −0.45 0.762 

D3 

D3-U1 309.92 412.71 366.41 22.36 −0.51 0.751 

D3-U2 404.17 530.29 473.66 26.49 −0.50 0.762 

D3-U3 459.95 562.10 493.84 23.87 −0.30 0.818 

All 161.89 785.05 429.29 144.84 / 0.206 
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correlated with pu, pu has the largest positive 
correlation with µ (ρc=0.74), while pu has the smallest 
positive correlation with Cc (ρc=0.05). 

3.2. Effects of Particle Gradation Parameters on 
Ultimate Ground Bearing Capacity 

The statistics of pu for 427 DEM tests are tabulated 
in Table 5, and the curves of pu,min, pu,max, and average 
value of pu (i.e. up ) for each test group are plotted in 
Figure 6. Figure 6 delineates the variation ranges of pu 
([pu,min, pu,max]) for all test groups; overlaps between 
these ranges across different parameters shall be 

attributed to the uncertainty of pu caused by the 
randomness of soil particles. The general trends of pu 
with different parameters, however, can still be 
identified (particularly from the variations of up ). It is 
observed from Figure 6(a) that given a constant Cu, 
up  increases with the increase of d50 (or the decrease 

of B/d50), while from Figure 6(b) it is seen that given a 
constant d50, up  increases with the increase of Cu, 
but the increasing rate when Cu<1.76 is greater than 
that when Cu>1.76. It is observed from Figure 6(c)-(d) 
that up  increases with the increase of Cc, µ or µr. 

 

Figure 6: Variations of pu,min, pu,max, and up : (a) with B/d50 (µ=µr=0.5); (b) with Cu (µ=µr=0.5); (c) with Cc (B/d50=31.25, Cu=2.67, 
µ=µr=0.5); (d) with µ (B/d50=31.25, Cu=1.76). 

 

Figure 7: Contours of different fields of the upper half of the ground for illustrating the evolution of shear bands with Cu 
(B/d50=31.25 and uy/B=0.4): (a) Particle rotation (°) with absolute rotation angles greater than 10°; (b) Porosity. 
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Figures 8 plot the particle rotation fields (in degrees) 
(with the positive value representing the 
counterclockwise rotation of particle) and porosity fields 
of the upper half of the ground varying with Cu given 
uy/B=0.4 and B/d50=31.25. Porosity fields in Figure 8(b) 
are obtained by the measurement circles arranged in 
an array layout similar to those elaborated in Figure 
4(a). Because the ground is composed of compacted 
dense soils, the general shear failure characterized 
with legible slip surfaces can be observed at the final 
failure stage of ground. It is clearly seen that the 
increases of the particle rotation angle and the porosity 
within the region of shear band are more pronounced 
than those outside the region of shear band. It is also 
noted that compared to the porosity field, it shall be 
easier and more consistent to measure the thickness of 
shear band (Ts) from the rotation field (e.g. Chen et al., 
2022; Liu et al., 2024). To measure Ts, the left branch 
of shear band is measured at two positions for the 
thickness Ts,1 and Ts,2, and similarly the right branch of 
shear band is measured at two positions for the 
thickness Ts,3 and Ts,4. Hence, the shear band 
thickness Ts can be calculated as the average value of 
the measured four thicknesses, that is, 
Ts=(Ts,1+Ts,2+Ts,3+Ts,4)/4, whose dimensionless 
definition is Ts/d50. Figure 8(a) shows the curves of Ts 
(Ts/d50) varying with B/d50 (d50) for constant Cu, while 
Figure 8(b) shows the curves of Ts (Ts/d50) varying with 
Cu for constant B/d50 (d50). From Figure 8(a), it is seen 
that for a constant Cu, Ts generally increases with the 
increase of d50, but Ts/d50 decreases with the increase 
of d50. From Figure 8(b), it is observed that Ts (Ts/d50) 
generally increases with the increase of Cu for a 
constant B/d50 (d50). For a constant B/d50 (d50), however, 
the variation of Ts/d50 with Cu is insignificant. Hence, it 
is concluded that the ratio of Ts/d50 is mainly dominated 
by the mean particle size d50 instead of other gradation 
parameters such as Cu and Cc, conforming to the 
experimental observations of Rattez et al. (2022). A 
large Cu, nevertheless, only contributes slightly to Ts 

since the enhanced interlocking of particles in different 
sizes may mildly lead to the thickness of shear band. 
To investigate the effect of Cu, the force chain network 
of contacts of particles for the local region around MCⅠ,r 
(within the shear band) and the local region around 
MCO,r located 7mm below MCⅠ,r (outside the shear 
band) as shown in Figure 7 are depicted in Figure 9, 
and the thickness of the force chain signifies the 
relative magnitude of the contact force. From Figure 9, 
it is clearly seen that compared to the force chain 
networks at the local region around MCO,r, those at the 
local region around MCI,r are characterized with more 
evident difference in the thicknesses of force chains 
and the directionality of the several major force chains 
is basically perpendicular to the slip surface. In addition, 
it is also seen that no matter at which measurement 
circle, the difference in the thicknesses of force chains 
tends to be more prominent with the increase of Cu. 

To further observe the force chain network 
quantitatively, the coordination number Nc, which 
represents the average number of active contacts per 
body (where a body can be either a ball or a clump), is 
defined as 

b
c

c b
1

N

i
i

N n N
=

=∑         (2) 

where the summation is taken over the Nb bodies 
whose centroids are located in the measurement circle, 
and c

in  is the number of active contacts of other 
bodies with the ith body. During the loading process of 
the footing, the variations of Nc at 4 measurement 
circles (as shown in Figure 7) for different Cu are 
measured and plotted in Figure 10. From Figure 10, it 
can be observed that for all cases, the values of Nc at 
uy/B=0 are close to 4.10 before the loading. However, it 
is worth underscoring three interesting observations on 
Nc. First, during the loading process of the footing, Nc 
decreases rapidly at the initial stage of uy/B≤0.1 and 
decreases mildly and maintain at a relatively constant 

 

Figure 8 Variations of shear band thickness Ts (Ts/d50) with: (a) B/d50; (b) Cu. 
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value at the stage of uy/B>0.1. Second, when the 
ground is loaded to the failure stage (i.e. uy/B=0.4), Nc 
calculated from MCⅠ within the shear band are 
evidently smaller than those calculated from MCO 
outside the shear band, disclosing the shear dilatancy 
behavior in shear band region. Third, for any 
measurement circle (i.e. MCⅠ,l, MCⅠ,r, MCO,l or MCO,r) 
located within or outside the shear band, Nc reduces 
with the increase of Cu from 1.25 to 2.67, implying that 
the shear dilatancy behavior at the ground failure shall 
be more prominent for a larger Cu. 

The coefficient of curvature Cc represents the 
curvature of the particle gradation curve and the 
continuity of the particle gradation. The DEM simulation 

results of D2-U3 reveals that the thickness of shear 
band is insensitive to Cc. Furthermore, by observing the 
DEM simulation results of D2-U2, it is found that when 
setting a combination of large µ and large µr, the failure 
mode and the shear band of ground appear to be 
legible. As a result, only the effects of B/d50 and Cu on 
the asymmetry and ultimate bearing capacity of ground 
(with µ = µr = 0.5) are examined, while Cc, µ, and µr are 
not considered any more. 

3.3. Effects of Footing Rotation on Ultimate 
Ground Bearing Capacity 

It is not difficult to imagine that the randomness of 
soil particles of ground may lead to more or less 

 

Figure 9: Force chain networks at the local regions around MCⅠ,r and MCO,r for different Cu given uy/B=0.4. 

 

Figure 10: Variation of coordination number Nc during the loading process of the footing for different Cu at: (a) measurement 
circles inside the shear band (MCⅠ,l and MCⅠ,r); (b) measurement circles outside the shear band (MCO,l and MCO,r). 

 

Figure 11: Location of the particle on the left half with ymax,left (in green color) and the particle on the right half with ymax,right (in red 
color) just below the footing bottom as well as initial footing rotation caused by inequality of ymax,left and ymax,right. 
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rotation of the footing, which may further affect the 
ultimate ground bearing capacity. To assess the effects 
of footing rotation, three test cases generated by 
random seeds from the test group D2-U2(1) are 
illustrated in Figure 11, in which ymax,left and ymax,right are 
defined for the particles at the left half and at the right 
half of ground with the maximum coordinate of y, 
respectively. For the test case 1, ymax,left > ymax,right and 
the footing tends to rotate in a clockwise direction, 
while for the test case 2 or 3, ymax,left < ymax,right and the 
footing tends to rotate in a counterclockwise direction. 
Hence, the initial rotation direction of footing can be 
readily determined by comparing ymax,left with ymax,right. It 
shall be emphasized here, however, that the initial 
rotation direction of footing may not be the final rotation 
direction of footing (at the ground failure stage), 
although they are consistent in some cases. 

 

Figure 12: Three curves of footing rotation angle α (with the 
positive value signifying the clockwise rotation) versus 
settlement uy/B. 

Corresponding to the three test cases, the footing 
rotation angle-settlement (α-uy/B) curves are plotted in 

Figure 12. It is evidently observed that for the test case 
1, the rotation of footing is always at the clockwise 
direction, while for the test case 2 or 3 the footing 
initially rotates in the counterclockwise direction and 
then turns to the clockwise direction. Furthermore, 
based on the curves in Figure 12, it is seen that before 
uy/B=0.2, the rotation angle is less than 2°, indicating 
that during the loading process before uy/B=0.2, the 
ground may mainly undergo the compaction of soils but 
with small rotation of footing, but after that, significant 
rotation of footing accompanying with the footing 
settlement can be observed. This phenomenon can be 
further validated through the rotation fields of particles 
of ground near the footing in Figure 13. 

By referring to Figure 12 and Figure 13, the failure 
pattern of ground and the corresponding behavior of 
footing can be generally categorized into two types. 
That is, the type I, in which we may find the test case 1, 
is characterized with the near-symmetric failure pattern 
and small rotation of footing, while the type II, in which 
we may find the test cases 2 and 3, is characterized 
with the evidently asymmetric failure pattern and large 
rotation (for example, 5°) of footing. The ultimate 
ground bearing capacities for test cases 1, 2 and 3 are 
515.3 kPa, 488.7 kPa and 504.0 kPa, respectively, so 
the ultimate ground bearing capacity for the test case 1 
is about 5.44% higher than that of test case 2 and 
about 2.24% higher than that of test case 3. As a result, 
it may be postulated that small rotation of footing and 
symmetric failure pattern of ground shall be beneficial 
to the ultimate ground bearing capacity. To further 
verify this opinion, the plots similar to those in Figure 13 
are replotted in Figure 14, but with the rotation of 
footing completely restricted for three test cases. From 
Figure 14, it is clearly observed that, compared to the 

 

Figure 13: Rotation fields of particles with absolute rotation angles greater than 10° for the ground near the footing (without its 
rotation being restricted) for different footing settlements. 
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cases with the footing rotation being unrestricted, the 
failure pattern of the ground in test case 2 is more 
symmetric compared to the test case 3, which shall be 
attributed to the randomness of soil particles of ground. 
By restricting the rotation of the footing, the pu in all 
three test cases can be increased. To be specific, the 
pu for test cases 1, 2, and 3 can be increased to 530.1 
kPa, 517.0 kPa, and 527.8 kPa, achieving the 
improvements of 2.87%, 5.79%, and 4.72%, 
respectively. These results suggest that the restriction 
of footing’s rotation may enhance the ultimate ground 
bearing capacity for a footing. 

As emphasized above, the footing rotation even 
under centric vertical load is caused by randomness of 
soil particles of ground in DEM simulations, so the 
failure pattern of ground accompanied with the footing 
rotation may also present more or less asymmetry. 
Consequently, the relationship between pu and the 
absolute value of αu (i.e. |αu|) is investigated for all test 
groups, and linear fitting is carried out on all the data of 
pu and |αu| with the Pearson correlation coefficient ρc, 
as given in Table 5. According to Table 5, it is also 
seen that small µ or µr (<0.5) may lead to small 
absolute value of ρc (≤0.16), implying that there exists 
an indefinite linear correlation between pu and |αu|. 
Furthermore, the linear fitting is applied to pu and |αu| 
calculated from test groups D1, D2-U1, D2-U2(1), 
D2-U3-C2 and D3, as shown in Figure 15, in which the 
symbols with the maximum value pu,max and the 
minimum value pu,min are particularly emphasized as 

the solid symbols. From Figure 15, it is seen that there 
is certain degree of negative linear correlation between 
pu and |αu|. In other words, a greater footing rotation 
|αu| corresponds to a lower pu, and for the investigated 
test groups the Pearson correlation coefficient ρc 
between pu and |αu| varies from −0.60 to −0.27, 
indicating that the potential rotation of footing shall be 
adequately considered in the footing design. The 
maximum overestimation ratio of pu can be calculated 
as 

( )u,max u,min u,minpR p p p−=       (3) 

To be conservative in practical design, the effects of 
particle gradation of granular soil of ground shall be 
adequately considered in the calculation of pu, and 
hence a heuristic modification factor χp is introduced 
here as: 

u,maxu,minp p pχ =        (4) 

with which, the ultimate bearing capacity of ground in 
design may be calculated by 

u,design u,continuumpp pχ=        (5) 

where pu,continuum is the ultimate bearing capacity of 
ground calculated based on the continuum-based 
methods. The χp can be interpreted as the ratio of the 
pu of the ground when the asymmetry induced by the 
random distribution of particles is maximized 

 

Figure 14: Rotation fields of particles with absolute rotation angles greater than 10° for the ground near the footing (with its 
rotation being restricted) for different footing settlements (uy/B=0.4). 

 

Figure 15: Linear fitting of pu and |αu|: (a) Test groups of D1; (b) Test groups of D2-U1, D2-U2(1), and D2-U3-C2; (c) Test groups 
of D3.  
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(corresponding to pu,min in this study) to that when the 
asymmetry is minimized (corresponding to pu,max). To a 
certain extent, χp reflects the maximum magnitude of 
the potential reduction in the pu caused by the 
asymmetry of the ground; therefore, a relatively 
conservative (as small as possible) pu,design can be 
obtained when χp is taken into account. To investigate 
the numerical relationship between χp and the 
parameters B/d50 and Cu, a MLR machine learning 
model is trained. The dataset from 242 sets of DEM 
simulations in 9 test groups (D1, D2-U1, D2-U2(1), 
D2-U3-C2, and D3) is utilized. Each test group 
corresponds to a unique combination of B/d50 and Cu, 
with only one χp value obtained per test group. 
Consequently, only 9 groups of data could be extracted 
from these DEM simulation results for the training and 
testing of the MLR model for χp. Given the small size of 
data, the full set of 9 groups of data is used to train the 
MLR model, and uncertainty analysis is ultimately 
conducted on the MLR prediction results using the 
same 9 groups of data. The following explicit 
expression of χp is attained as 

( ) ( )u50 0,10.0035 0.0585 +0.5188,p pB d Cχ χ ∈= +     (6) 

It is noted that the training dataset is restricted to 
the following ranges: B/d50∈[20.83, 41.67] (with 
B=20mm), Cu∈[1.25, 2.67], Cc ≈ 1, and µ = µr = 0.5. 
Owing to the constraints of computational resources for 
DEM simulations, the current χp has been fitted only 

using data within a relatively limited range of gradation 
parameters. It is anticipated that with an increase of 
computational resources in the future, the range of 
parameter values adopted for DEM simulations can be 
further expanded—for instance, to large B/d50 values 
(corresponding to smaller particle sizes and a greater 
number of particles) or larger Cu values. 

The uncertainty analysis of the regression 
coefficients is conducted using ordinary least squares 
(OLS) regression (via the Statsmodels library), and the 
uncertainty analysis of the predicted results is 
conducted with error propagation theory (via the 
Uncertainties library). The uncertainties (signified by 
the standard errors, SEs) of each coefficient in the OLS 
regression results are presented in Table 6. Taking the 
B/d50 as an example, 0.0035 represents the 
regression-derived coefficient (or point estimate, PE); 
0.0006 denotes the SE, reflecting the degree of 
sampling fluctuation in the estimate (i.e., the 
uncertainty of the estimation). The relative error (RE) is 
calculated as: (SE / PE) × 100%, which is used to 
measure the relative fluctuation of the estimated value. 
It is seen from Table 6 that the maximum value of RE is 
17.14%, which indicates that there exists a certain 
degree of uncertainty in the current estimation of the 
coefficients. The underlying reason is that only a 
relatively limited set of 9 groups of data is utilized to 
train the MLR model. 

Table 6: Uncertainties of each Regression Coefficient in the MLR Model 

Parameter Point Estimate (PE) Standard Error (SE) Relative Error (RE) 

B/d50 0.0035 0.0006 17.14% 

Cu 0.0585 0.0087 14.87% 

Constant term (or intercept) 0.5188 0.0255 4.92% 

 

Table 7: Confidence Intervals (CIs) of the Predicted Values of χp 

B/d50 Cu 
χp 

SE 
95% CI 

Actual Predicted Lower bound Upper bound Width 

20.8 

1.25 0.660 0.665 0.030 0.606 0.724 0.118 

1.76 0.680 0.695 0.032 0.632 0.758 0.125 

2.67 0.771 0.748 0.037 0.675 0.821 0.145 

31.3 

1.25 0.700 0.702 0.034 0.635 0.769 0.133 

1.76 0.745 0.732 0.035 0.663 0.801 0.137 

2.67 0.769 0.785 0.039 0.709 0.861 0.153 

41.7 

1.25 0.751 0.739 0.037 0.666 0.812 0.145 

1.76 0.762 0.768 0.039 0.692 0.844 0.153 

2.67 0.818 0.822 0.043 0.738 0.906 0.169 
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Subsequently, based on the coefficient 
uncertainties, the uncertainties of the predicted values 
are calculated via the error propagation theory, and the 
confidence intervals (CIs) of the predicted values are 
tabulated in Table 7. In the table, the CI refers to the 
probability interval that contains the true value of χp at a 
95% confidence level. Its calculation is based on the 
assumption that ‘predicted values follow a normal 
distribution’, with the formula: predicted value ± (1.96 × 
SE of predicted value), where 1.96 is derived from the 
probabilistic characteristics of the normal distribution 
and is a universal standard for calculating 95% CIs in 
statistics. In the standard normal distribution, 
approximately 95% of the probability is concentrated 
within the range of ±1.96 standard deviations from the 
mean. As observed in Table 7, the SEs of the predicted 
values are from 0.030 to 0.043, and the widths of the 
CIs range from 0.118 to 0.169. The CI width is not 
narrow, indicating that there is a certain degree of 
uncertainty in the predicted values. Analyzing the 
sources of this uncertainty, in addition to the small 
amount of data used for model training, the ‘actual χp 
values’ are derived from DEM simulation results, rather 
than the ‘true values’ with absolute zero error, and their 
inherent uncertainties may also lead to deviations. 
Meanwhile, the 9 groups of data are further used for 
testing the MLR model, and the results show that the 
coefficient of determination (R2) is 0.930 (> 0.9) and the 
root mean square error (RMSE) is 0.013, which verifies 
the model has a certain level of overall fitting accuracy 
and predictive robustness, and can be used for the 
quantitative prediction and analysis of χp. 

Figure 16(a) and (b) illustrate the variation of the 
calculated χp (the ‘Actual’ values in the figures) with 
particle gradation parameters B/d50 and Cu, 
respectively, and the calculated χp can also be found in 
Table 5. The χp values obtained from the MLR model 
are also plotted in Figure 16. From Figure 16(a), it is 

clearly seen that for a constant Cu, χp decreases as d50 
increases (or as B/d50 decreases), while for a constant 
B/d50, χp increases with the increase of Cu. In other 
words, it may be concluded that small χp (with the value 
about 0.66) can be attained when the mean particle 
size d50 is large and the particle sizes are close to 
uniform (i.e. Cu≈1); on the contrary, it is also concluded 
that when the mean particle size d50 is small and the 
particle sizes are comparatively non-uniform, it may be 
unnecessary to modify pu calculated based on the 
continuum mechanics, as χp is close to 1.0. Additionally, 
it is observed from Figure 16 that the explicit 
expression derived from the MLR model provides an 
acceptable fitting accuracy to the ‘actual’ values. For 
the nine predicted values of χp, the average value for 
the absolute value of deviation is 1.44%. Hence, Eq.(6) 
can be utilized to calculate χp for specific gradation 
parameters (B/d50 and Cu). It is noticed that in studies 
on the reduction of pu due to the asymmetry of ground, 
the primary focus should be on the relative relationship 
between particle size and footing width. Specifically, for 
the comparatively non-uniform particle sizes (e.g., 
Cu=2.67), when B/d50≥81.37, χp reaches its upper limit 
of 1.00, according to Eq.(6). Theoretically, as B/d50 
continues to increase, the impact of asymmetry of the 
ground on the reduction of pu diminishes and can even 
be neglected. Similarly, when the particle sizes are 
close (e.g., Cu=1.25), χp reaches 1.00 when 
B/d50≥102.31. Given χp =1.00, Eq.(6) reduces to:  

( )
threshold u u50 14.750 +120.750, 1.25, 2.67B d C C ⎡ ⎤⎣ ⎦=− ∈     (7) 

when applying Eq.(7), the threshold value of B/d50 can 
be determined based on the given value of Cu, 
indicating the transition point at which no reduction on 
pu is necessary. If the B/d50 of the actual soil exceeds 
the threshold value, the reduction of pu calculated by 
the continuum method due to the effect of particle 

 

Figure 16: Actual values and MLR model values of χp, varying with particle gradation parameters: (a) χp versus B/d50; (b) χp 
versus Cu. 
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gradation becomes unnecessary; if the B/d50 of the 
actual soil is below the threshold value, however, the 
reduction of pu shall be appropriately evaluated. 

4. MACHINE LEARNING-BASED PREDICTION ON 
ULTIMATE GROUND BEARING CAPACITY 

4.1. Brief Introduction to Machine Learning Models 

Since pu is a function of the gradation parameters 
(B/d50, Cu, Cc) and the strength parameters (µ, µr) apart 
from the unit weight of the soil particles, the input 
parameters (B/d50, Cu, Cc, µ, µr) are utilized as the 
features in the training process of ML, while the output 
parameter pu is utilized as the label. By defining a set of 
input parameters along with the output pu as a sample, 
three popular machine learning models, namely MLR, 
ANN and XGBoost, are applied to predicting pu. The 
MLR model is a ML model with comparatively simple 
structure but with the ability of providing explicit 
expression for pu, so that the effects of various features 
on pu can be readily assessed. The MLR model, 
nevertheless, is incapable of capturing the potential 
nonlinear relationship between the input and the output. 
Compared to the MLR model, the ANN and XGBoost 
models have more powerful fitting capabilities as they 
can capture potential nonlinear relationships. It is 
emphasized that because both ANN and XGBoost 
belong to the ‘black box’ models, the relationships 
between the features and labels established by the two 
models can’t be explicitly presented; as a result, it is 
not easy to directly analyze the importance of each 
feature or the influence of each feature on pu. 

A total of 427 test data of ground bearing capacity 
from DEM simulations, whose statistics are 
summarized in Table 4 and Table 5 respectively, are 
shuffled and randomly divided into a portion of 80% as 
the training dataset and the remaining portion of 20% 
as the testing dataset. Stratified sampling is performed 
during this process, meaning that the same proportion 
of samples is extracted from each test group. This 
ensures that the samples in each dataset can more 
effectively represent all test groups. 

4.2. MLR Model for Predicting the Ultimate Ground 
Bearing Capacity  

Based on the MLR model, the explicit expression of 
pu (in kPa) is attained 

pu = !3.50 B d 50( ) + 71.58C u +11.25C c +

1090.04µ + 622.09µr ! 421.81
     (8) 

The five input parameters of the MLR model are all 
dimensionless (including B/d50). The output value (pu) 
has a unit of kPa (equivalent to kN/m²) and a dimension 
of ML−1T−2. The five coefficients all have a unit of kPa, 
thus the equation satisfies the requirement of 
dimensional consistency. By applying the testing 
dataset to examining Eq.(8), the scatter plot of 
predicted values versus actual values is depicted in 
Figure 17.  

 

Figure 17: Scatter plot of predicted values of the trained MLR 
model versus actual values in the testing dataset. 

It is clearly observed from Figure 17 that the 
scattered dots are basically distributed within the range 
of ±20% about the 45° line where the predicted value 
equals to the actual value. Based on the testing dataset, 
the measures of R2=0.915 (>0.9) and RMSE=42.287 
implies that the explicit expression/model of pu can 
provide an acceptable prediction on pu. It is noticed in 
Figure 6(b), however, that there actually exists a 
nonlinear relationship between pu and Cu, but the MLR 
model in Eq.(8) can only supply the linear relationship 

Table 8: Sensitivity Ranking of Parameters in the Explicit Expression of pu Derived from MLR 

Parameter Absolute value of coefficient Ranking Absolute value of SC  Ranking (of sensitivity) 

B/d50 3.50 5 0.16 4 

Cu 71.58 3 0.26 3 

Cc 11.25 4 0.02 5 

µ 1090.04 1 0.64 1 

µr 622.09 2 0.48 2 
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between the input (or feature) and the output. The 
coefficients in Eq.(8) are influenced by the value 
ranges of the input parameters, and thus cannot be 
directly compared (for example, a large coefficient for µ 
may result from the small value range of µ itself). This 
makes it impossible to directly derive the sensitivity 
ranking of parameters (i.e., the extent to which 
changes in a parameter cause significant fluctuations 
in pu). To evaluate the sensitivity of each parameter, 
the sensitivity ranking of the MLR model parameters is 
calculated using the Statsmodels library. The core 
approach is to compute the standardized coefficients 
(SCs), which eliminate the dimensional differences 
among parameters: the larger the absolute value of a 
SC, the stronger the sensitivity of the corresponding 
parameter to the output pu. The SC of an input 
parameter is calculated as: SC = Coefficient of the 
parameter × (Standard deviation of the parameter / 
Standard deviation of pu). The absolute value of SC 
directly corresponds to the strength of sensitivity. 

As observed in Table 8, the two rankings of the 
strength parameters µ and µᵣ are significantly higher 
than those of the particle gradation parameters, which 
is consistent with physical logic: the sliding friction 
between particles (reflected by µ) directly determines 
the shear strength of the soil and serves as the core 
control parameter for bearing capacity; the rolling 
resistance (reflected by µᵣ, analogous to the angularity 
of particles) enhances overall stability by restricting 
particle rotation, and its influence on pu is 
approximately 75% of that of µ (=(0.48/0.64)×100%), 
making it also an indispensable key parameter. Among 
the particle gradation parameters, Cu exhibits the 
highest sensitivity, as an increase in the span of 
gradation strengthens interlocking between particles. 
For B/d50, although its absolute value of coefficient 
ranks 5th, its sensitivity ranks 4th—this reversal in 
ranking clearly demonstrates that the original 
coefficients only reflect ‘the impact of a 1-unit change in 
a parameter on pu’ without accounting for the value 
range of the parameter itself. Specifically, although 

B/d50 has a ‘small per-unit impact’ (3.50 kPa per unit), it 
has a large actual variation range (from 20.83 to 41.67, 
a variation of 20.84 units), resulting in a total impact 
magnitude of 3.50×20.84 = 72.94 kPa; in contrast, Cc 
has a ‘large per-unit impact’ (11.25 kPa per unit) but a 
small actual variation range (from 0.51 to 2.01, a 
variation of 1.5 units), leading to a total impact 
magnitude of only 11.25×1.5 = 16.875 kPa. Therefore, 
changes in B/d50 have a greater impact on pu than Cc, 
and the SCs precisely capture this ‘true intensity of 
influence’. According to the research of Toyosawa et al. 
(2013), the influence of B/d50 can be explained to a 
certain extent. The thickness of the shear band in the 
ground varies largely under the influence of d50; when 
d50 is large compared with the footing width B (i.e., 
when B/d50 is small), the pu of the ground may be 
affected by the formation of shear bands—a 
phenomenon referred to as the ‘particle size effect’. 

It should be noted that the current prediction results 
are only valid within the value ranges of the parameters 
considered in this study. For example, the relationship 
between pu and Cu may actually be nonlinear; thus, as 
Cu exceeds the current value range, the prediction 
deviation of the MLR model may increase, rendering 
the model predictions no longer applicable. Another 
example is that Cc generally corresponds to good 
gradation continuity only when it is between 1 and 3. 
Since the current study only considers Cc up to 2, the 
existing pu prediction may also become inapplicable as 
Cc continues to increase. 

4.3. ANN Model for Predicting the Ultimate Ground 
Bearing Capacity 

The training strategy of ANN model consists of 
determination of hyperparameters, selection of 
activation functions, optimization algorithm and loss 
function and preventing overfitting (e.g. Zhang et al., 
2021; Zhang et al., 2022). The flowchart of the training 
of an ANN model, as depicted in Figure 18, comprises 
the data preprocessing, model construction, 

Table 9: Involved Methods and Characteristics of Components in an ANN Model 

Component Involved Methods Characteristic 

Data preprocessing Min-Max normalization Standardize the numerical range of all features to [0,1]. 

Activation function Rectified Linear Unit (ReLU), 
ReLU(x)=max(0, x) 

Mitigates gradient vanishing, computationally efficient (e.g. Zhang et 
al., 2021). 

Optimization algorithm Adaptive Moment estimation (Adam) Adaptive learning rate, low memory usage (e.g. Kingma and Ba, 2014). 

Loss Function Mean Squared Error (MSE) Commonly used in regression tasks to measure error between 
predicted and actual values. 

Overfitting prevention L2 regularization Prevents overfitting and enhances generalization. 

Hyperparameter 
optimization Random Search  Effective for continuous variables, high computational efficiency. 
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hyperparameter optimization and model training. The 
components of an ANN model and the characteristics 
of the involved methods are tabulated in Table 9. 

Since the initial learning rate is a continuous 
variable, the random search method (e.g. Bergstra and 
Bengio, 2012) is adopted here. Owing to the limitation 
of the size of datasets for ML, the K-fold 
cross-validation (CV) (e.g. Dong, 2024) is combined 
with the random search method to reducing the 
evaluation bias caused by the data splitting in the ANN 
model. 

Figure 19 illustrates the principle of the combined 
random search and K-fold CV, with ‘K’ (=5 in this study) 
denoting the number of groups of training dataset being 
split into after shuffling of data. Based on the 50 
combinations of random hyperparameters, RMSE  
varies in the range of [38.58, 451.30], with an average 
value of 100.00 and a standard deviation of 116.27, 
while the optimal combination of hyperparameters 
corresponding to the minimum value of RMSE , as 
given in the last column in Table 10, is selected for the 
ANN model. Then, using the entire training dataset and 
the optimal hyperparameters, a final ANN model is 

trained and tested on the testing dataset.  

Figure 20 shows the training results of the ANN 
model. It is observed from Figure 20(a) that the loss 
function (MSE) gradually approaches smaller values as 
the training epochs increase. It is seen from Figure 
20(b) that the scattered dots are basically distributed 
within the range of ±20% about the 45° line where the 
predicted value equals to the actual value. The 
evaluation measure R2 of ANN (i.e. 0.946) is larger 
than the value of R2 (i.e. 0.915) obtained by MLR, with 
a 3.4% increase, while the RMSE for the ANN (i.e. 
33.610) is smaller than RMSE of the MLR (i.e. 42.287), 
with a 20.5% decrease, indicating that the ANN model 
is superior to MLR in prediction accuracy. 

Different from MLR, however, the ANN model can’t 
provide an explicit expression owing to its 
characteristic of ‘black box’. To address this limitation 
and analyze the importance of each feature to pu, two 
approaches are utilized. In the approach of permutation 
importance (PI) (e.g. Huang et al., 2016), the values of 
each feature are randomly shuffled, and then the 
impact of shuffling on the loss function (MSE) is 
assessed. If the random shuffling of values of a feature 

 

Figure 18: Flowchart of training an ANN model. 

Table 10: Search Space and Results of Random search for Hyperparameters of the ANN Model 

Hyperparameter Search Space Search Results 

Number of hidden layers {1, 2, 3, 4, 5} 4 

Number of neurons per layer {5, 6, 7, …, 24, 25}  For each layer: 14, 10, 20, 7 

Number of samples per batch {10, 15, 20, 25} 20 

Initial learning rate [10−4~10−1] (logarithmic sampling) 8.47×10−3 
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leads to a significant change in MSE, this feature shall 
be important for the prediction of pu, and hence the 
change of absolute value of MSE is taken as an 
importance indicator (II). The second is the approach of 
integrated gradient (IG) (e.g. Sundararajan et al., 2017). 
IG is an advanced feature attribution technique 
specifically designed to provide deep explanations for 
complex ML models, such as neural networks. It offers 
insights into model decisions by quantifying the 
contribution of individual features to the model output. 

The importance indicators and ranks of features in 
the ANN model calculated using two approaches are 
tabulated in Table 11, and the corresponding 

histograms are plotted in Figure 21. As a comparison, 
the linear fitting coefficients and ranks of absolute 
values of coefficients of the MLR model are also 
provided in Table 11. It is seen from Figure 21 that the 
ranks of feature importance of the ANN model by 
applying the two approaches are slightly similar. 
Specifically, no matter which approach is applied, µ 
and µr are the major influential factors of pu, followed by 
Cu, while the B/d50 and Cc are minor influential factors, 
and particularly it is interesting to note that the rank of 
absolute values of linear fitting coefficients for those 
features of the MLR model also exhibits the similar 
phenomenon. Additionally, the importance indicator of 
B/d50 obtained by the approach of IG is negative, with 

 

Figure 19: Principle of the random search for hyperparameters and K-fold CV of the ANN model. 

 

 

Figure 20: Results of the ANN model: (a) MSE-epoch curve; (b) Scatter plot of predicted values versus actual values for the 
testing dataset. 
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the same sign as the coefficient obtained by MLR, 
indicates that B/d50 has a diminishing effect on the 
prediction of pu. 

4.4. XGBoost Model for Predicting the Ultimate 
Ground Bearing Capacity 

The XGBoost library is used for training the 
XGBoost model. The Min-Max normalization method is 
added in the program for data preprocessing. The L2 
regularization is added to enhance the model’s 
generalization ability and prevent overfitting. The 
partitioning of dataset, the random search for 
hyperparameters (50 times), and the K-fold CV (K=5) 
for the XGBoost model are identical to those employed 
in the ANN model, as plotted in Figure 19. Using the 
entire training dataset and the optimal 
hyperparameters (as given in the last column in Table 

12), a final XGBoost model is trained and tested on the 
testing dataset. 

The training results of XGBoost are plotted in Figure 
22 with the loss function (MSE) curve in Figure 22(a) 
and the scatter plot of predicted versus actual values in 
Figure 22(b). The R2 of the XGBoost model is 0.950, 
which is larger than the value of R2 (i.e. 0.915) obtained 
by MLR, with a 3.8% increase, indicating the slight 
superiority of XGBoost model to MLR model in 
prediction accuracy, while the RMSE for the XGBoost 
(i.e. 32.501) is smaller than RMSE of the MLR (42.287), 
with a 23.1% decrease. Similar to ANN models, 
XGBoost can’t provide an explicit expression for pu, so 
the built-in feature importance (FI) approach in the 
XGB library and the SHapley Additive exPlanations 
values of tree ensembles (TreeSHAP) approach (e.g. 
Lundberg et al., 2018) may be employed for analyzing 

Table 11: Importance Analysis of Features of MLR Model and ANN Model in Predicting pu 

Feature 

MLR ANN 

linear fitting 
coefficient 

Rank of absolute 
value 

PI IG 

II Rank II Rank of absolute value 

B/d50 −3.52 5 0.0038 4 −0.034 5 

Cu 71.55 3 0.0134  3 0.080 3 

Cc 10.95 4 0.0027 5 0.062 4 

µ 1073.45 1 0.0311 1 0.243 2 

µr 617.06 2 0.0236 2 0.267 1 

 
 

 

Figure 21: Importance indicator (II) of features of ANN model in predicting pu: (a) Based on the approach of PI; (b) Absolute 
value based on the approach of IG. 

Table 12: Search Space and Results of Random search for Hyperparameters of the XGBoost Model 

Hyperparameter Search space Search results 

Number of estimators (trees) {100, 200, 300} 200 

Maximum tree depth {3, 4, 5, 6, 7, 8} 6 

Minimum child weight {1, 2, 3, 4, 5 ,6} 1 

Subsample ratio [0.5~1.0] (uniform sampling) 0.81 

Column sample ratio per tree [0.5~1.0] (uniform sampling) 0.78 

Learning rate [10−4~10−1] (logarithmic sampling) 0.11 
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the importance of features on pu. In the approach of FI, 
there are three importance indicators (II), namely II by 
Weight (IIW), II by Gain (IIG), and II by Cover (IIC). IIW 
represents the number of times a feature is used to 
split samples across all trees, which relates to its 
contribution to the final prediction. IIG reflects the 
average benefit or improvement brought by a feature 
when used for splitting. IIC represents the number of 
samples affected by the splitting nodes where a feature 
is used. The approach of SHAP was originally 
developed from game theory and is used to measure 
the contribution of variables to a prediction. XGBoost 
can automatically utilize the TreeSHAP algorithm, 
which is optimized for tree-based models within the 
SHAP library.  

Table 13 and Figure 23 display the importance 
indicators (II) of features based on the approaches of 
FI and TreeSHAP in XGBoost. Generally, IIG is 
considered the most critical indicator in the approach of 
FI, as it directly measures the extent to which a feature 
improves the model’s predictive performance. Based 
on IIG in Figure 23, it is concluded that µ and µr are the 
most critical parameters for predicting pu, followed by 
Cu, while the B/d50 and Cc are minor influential factors. 
This conclusion is further supported by the feature 
importance ranks obtained from the Tree SHAP 
method, which shows similar results. Additionally, this 
aligns with the findings from the MLR and ANN models. 

Among the three models, the value of MLR is the 
smallest, while the value of XGBoost is the largest, by 

 

Figure 22: Results of the XGBoost model: (a) MSE-number of trees curve; (b) Scatter plot of predicted values versus actual 
values for the testing dataset. 

Table 13: Importance Indicators (II) of Features of XGBoost Model in Predicting pu 

Feature 
FI TreeSHAP 

IIW Rank IIG Rank IIC Rank II Rank 

B/d50 221 1 0.0085 5 89.3 5 0.0204 4 

Cu 157 3 0.0695 3 114.7 4 0.0462 3 

Cc 91 5 0.0230 4 190.6 2 0.0176 5 

µ 214 2 0.1478 2 180.2 3 0.0627 2 

µr 139 4 0.3364 1 201.9 1 0.0913 1 

 

 
Figure 23: Importance indicators (II) of features of XGBoost model in predicting pu: (a) Based on the approach of FI; (b) Based 
on the approach of TreeSHAP. 
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means of the measure of R2; while the value of MLR is 
the largest, and the value of XGBoost is the smallest, 
by means of the measure of RMSE. The superiority of 
MLR model is that it can provide an explicit expression 
of pu with clear implications between different input 
parameters (B/d50, Cu, Cc, µ, µr) and pu, while the 
superiorities of ANN and XGBoost lie in that they may 
offer the nonlinear relationship and better accuracy 
models for pu. 

5. CONCLUSION 

Unlike continuum-based methods, the DEM can 
capture the influence of granular characteristics (such 
as the particle gradation, particle friction, and particle 
shape) on the ultimate ground bearing capacity pu. In a 
total of 432 DEM tests, the rolling resistance linear 
contact model is employed to predict the ultimate 
bearing capacity of ground of graded soils (with the 
gradation parameters of mean particle size d50, 
coefficient of uniformity Cu, and coefficient of curvature 
Cc and the strength parameters of friction coefficient µ 
and rolling resistance coefficient µr). The objective is to 
assess the impact of these granular characteristics on 
the asymmetric development of ground failure pattern 
(or shear band) and pu under the vertical concentrated 
loading. The modern tool of machine learning is used 
to train a prediction model for the pu of the ground using 
datasets obtained from a large amount of DEM 
simulations. Some valuable observations and 
conclusions are summarized as follows: 

1. The ultimate ground bearing capacity pu 
increases with Cu, Cc, µ, and µr, but decreases 
with B/d50 (for a constant footing width B). The 
shear band thickness increases with d50 or Cu. A 
negative correlation is observed between pu and 
the corresponding footing rotation angle αu. 

2. A modification factor χp for the pu predicted by 
continuum-based methods is defined and an 
explicit expression of χp is derived using the 
MLR model. A larger d50 and smaller Cu may 
lead to a lower χp, indicating a more evident 
overestimation of continuum-based methods on 
pu. 

3. The MLR machine learning model provides an 
explicit expression for the prediction of pu, while 
the ‘black-box’-style ANN and XGBoost models 
achieve higher prediction accuracy. Feature 
importance analysis shows the ranking of input 
parameter influences on pu (from highest to 
lowest): µ and µr > Cu > B/d50 and Cc. 
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