Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 1 (2025)

Sustainable Foundations: Integration of Recycled Materials and Geosynthetics in Intelligent Design

Submitted
August 4, 2025
Published
2025-08-22

Abstract

The demand for innovative, sustainable foundation engineering solutions has increased due to the rising pressure to lessen the environmental impact of major developments. The integration of geosynthetics and recycled materials into intelligent foundation design is critically examined in this work as a means of achieving robust, low-carbon, and resource-efficient infrastructure systems. This paper's thematic analysis and structured literature review demonstrate how waste-derived materials, including fly ash, recycled concrete aggregates, waste plastics, and industrial by-products, can successfully replace conventional building materials in ground improvement and foundation applications. Furthermore, geosynthetics—such as geotextiles and geogrids—provide lightweight, long-lasting, and eco-friendly reinforcement substitutes that improve soil performance while using less material. The study also looks at how real-time monitoring, sensor technologies, and artificial intelligence (AI) might improve structural performance, maximise material selection, and prolong the life of foundation systems. The results of life cycle assessment (LCA) and life cycle cost analysis (LCCA) show significant economic and environmental advantages, such as lower energy use, greenhouse gas emissions, and overall project costs. However, the main obstacles to broad adoption are found to be issues like material heterogeneity, a lack of standardisation, and a limited degree of digital integration. To promote sustainable foundation practices through material innovation, digital transformation, and the concepts of the circular economy, the study ends by offering practical suggestions for researchers, industry practitioners, and legislators. The results provide insightful information on how smart, sustainable foundation design may support the global shift to more resilient and environmentally friendly built environments.

References

  1. Abbasnejad, B., Soltani, S., Karamoozian, A., & Gu, N. (2024). A systematic literature review on the integration of Industry 4.0 technologies in sustainability improvement of transportation construction projects: state-of-the-art and future directions. Smart and Sustainable Built Environment. https://doi.org/10.1108/SASBE-11-2023-0335
  2. Abedi, M., Fangueiro, R., Correia, A. G., & Shayanfar, J. (2023). Smart geosynthetics and prospects for civil infrastructure monitoring: a comprehensive and critical review. Sustainability, 15(12), 9258. https://doi.org/10.3390/su15129258
  3. Abera, Y. A. (2024). Sustainable building materials: A comprehensive study on eco-friendly alternatives for construction. Composites and Advanced Materials, 33, 26349833241255957. https://doi.org/10.1177/26349833241255957
  4. Abhishek, A., Guharay, A., Raghuram, A. S. S., & Hata, T. (2024). A state-of-the-art review on suitability of rice husk ash as a sustainable additive for geotechnical applications. Indian Geotechnical Journal, 54(3), 910-944. https://doi.org/10.1007/s40098-024-00905-w
  5. Abou Chaz, N. (2024). Experimental and Numerical studies of granular platforms reinforced by geosynthetics laid over soft subgrade soil (Doctoral dissertation, Université Grenoble Alpes [2020-....]). https://doi.org/10.1051/e3sconf/202336802036
  6. [1] Acharya, A., & Kogure, T. (2024). Journal of Rock Mechanics and Geotechnical Engineering.
  7. Achouch, M., Dimitrova, M., Ziane, K., Sattarpanah Karganroudi, S., Dhouib, R., Ibrahim, H., & Adda, M. (2022). On predictive maintenance in industry 4.0: Overview, models, and challenges. Applied sciences, 12(16), 8081.https://doi.org/10.3390/app12168081
  8. Adewale, B. A., Ene, V. O., Ogunbayo, B. F., & Aigbavboa, C. O. (2024). A Systematic Review of the Applications of AI in a Sustainable Building’s Lifecycle. Buildings, 14(7), 2137. https://doi.org/10.3390/buildings14072137
  9. Afzal, M., Li, R. Y. M., Ayyub, M. F., Shoaib, M., & Bilal, M. (2023). Towards BIM-based sustainable structural design optimization: a systematic review and industry perspective. Sustainability, 15(20), 15117. https://doi.org/10.3390/su152015117
  10. Ahmed, Z. J., Al-Kremy, A. R. A., & Jafer, H. (2024, October). A review on sustainable stabilizing for subgrade soil by GGBS and CKD. In AIP Conference Proceedings (Vol. 3249, No. 1, p. 060016). AIP Publishing LLC. https://doi.org/10.1063/5.0237126
  11. [2] Ajirotutu, R. O., Adeyemi, A. B., Ifechukwu, G. O., Iwuanyanwu, O., Ohakawa, T. C., & Garba, B. M. P. (2024). Future cities and sustainable development: Integrating renewable energy, advanced materials, and civil engineering for urban resilience. International Journal of Sustainable Urban Development, 3.
  12. Al-Sharif, M., Geldermans, B., & Rinke, M. (2024). From waste to wealth: a study of concrete recycling in Jordan. Frontiers in Sustainability, 5, 1398918. https://doi.org/10.3389/frsus.2024.1398918
  13. Algarni, S., Tirth, V., Alqahtani, T., Alshehery, S., & Kshirsagar, P. (2023). Contribution of renewable energy sources to the environmental impacts and economic benefits for sustainable development. Sustainable energy technologies and assessments, 56, 103098. https://doi.org/10.1016/j.seta.2023.103098
  14. Ali, L. H., & Atemimi, Y. K. (2024, August). Effective Use of Pozzolanic Materials for Stabilizing Expansive Soils: A Review. In IOP Conference Series: Earth and Environmental Science (Vol. 1374, No. 1, p. 012014). IOP Publishing. https://doi.org/10.1088/1755-1315/1374/1/012014
  15. Ali, H. F. H., & Mohammed, A. S. (2025). Innovative analysis and advanced modeling of UCS and CBR in fly ash-treated soils: evaluating the impact of hydraulic index, chemical alteration, lime modulus, and geochemical indices. Modeling Earth Systems and Environment, 11(1), 1-32.https://doi.org/10.1007/s40808-024-02230-w
  16. Alj, I., Quiertant, M., Khadour, A., Grando, Q., & Benzarti, K. (2021). Environmental Durability of an Optical Fiber Cable Intended for Distributed Strain Measurements in Concrete Structures. Sensors, 22(1), 141.https://doi.org/10.3390/s22010141
  17. Al-Khafaji, R., Dulaimi, A., Jafer, H., Mashaan, N. S., Qaidi, S., Obaid, Z. S., & Jwaida, Z. (2023). Stabilization of soft soil by a sustainable binder comprises ground granulated blast slag (GGBS) and cement kiln dust (CKD). Recycling, 8(1), 10.https://doi.org/10.3390/recycling8010010
  18. Almusaed, A., Yitmen, I., Myhren, J. A., & Almssad, A. (2024). Assessing the impact of recycled building materials on environmental sustainability and energy efficiency: a comprehensive framework for reducing greenhouse gas emissions. Buildings, 14(6), 1566.https://doi.org/10.3390/buildings14061566
  19. Amir, S., Salehi, N., Roci, M., Sweet, S., & Rashid, A. (2023). Towards circular economy: A guiding framework for circular supply chain implementation. Business Strategy and the Environment, 32(6), 2684-2701. https://doi.org/10.1002/bse.3264
  20. Anjana, K., Herath, M., & Epaarachchi, J. (2024, August). Design of a Distributed Optical Fibre Sensor System for Geohazards Early Warning: Realtime Multiparameter Monitoring. In International Engineering Research Symposium (pp. 105-115). Singapore: Springer Nature Singapore.https://doi.org/10.1007/978-981-96-1399-1_9
  21. Armistead, S. J., & Babaahmadi, A. (2025). Navigating regulatory challenges, technical performance and circular economy integration of mineral-based waste materials for sustainable construction: A mini review in the European context. Waste Management & Research, 43(5), 674-683. https://doi.org/10.1177/0734242X241270973
  22. [3] ASTM F3079-14(2020) - Standard Practice for Use of Distributed Optical Fiber Sensing Systems for Monitoring the Impact of Ground Movements During Tunnel and Utility Construction on Existing Underground Utilities.
  23. Asmara, Y. P. (2025). Green Engineering Materials: Innovations and Applications for Sustainable Construction. CRC Press.https://doi.org/10.1201/9781003617594
  24. Atienza, E. M., De Jesus, R. M., & Ongpeng, J. M. C. (2023). Development of foam fly ash geopolymer with recycled high-density polyethylene (HDPE) plastics. Polymers, 15(11), 2413.https://doi.org/10.3390/polym15112413
  25. Awewomom, J., Dzeble, F., Takyi, Y. D., Ashie, W. B., Ettey, E. N. Y. O., Afua, P. E., ... & Akoto, O. (2024). Addressing global environmental pollution using environmental control techniques: a focus on environmental policy and preventive environmental management. Discover Environment, 2(1), 8.https://doi.org/10.1007/s44274-024-00033-5
  26. Azam, A., Gabr, A., Ezzat, H., Arab, M. Alshammari, T.O., Alotaib, E., Zeiada, W., (2024) Life cycle assessment and pavement performance of recycled aggregates in road construction, Case Studies in Construction Materials, 20, 2024, e03062, ISSN 2214-5095.https://doi.org/10.1016/j.cscm.2024.e03062
  27. Azmi, F. R., Roni, M., & Sa’at, M. (2024). Circular supply chain management in developing countries: challenges, opportunities and pathways to sustainability. Information Management and Business Review, 16(1), 105-115.https://doi.org/10.22610/imbr.v16i1(I).3666
  28. Badiger, M., Mamatha, K. H., & Dinesh, S. V. (2025). Mechanical Evaluation of Granular Sub-base Reinforced with Recycled Tyres: A Way Towards Sustainability. Geotechnical and Geological Engineering, 43(5), 189.https://doi.org/10.1007/s10706-025-03139-6
  29. Barker, T., Parnell, G. S., Pohl, E., Specking, E., Goerger, S. R., & Buchanan, R. K. (2022). Impact of reliability in conceptual design—An illustrative trade-off analysis. Systems, 10(6), 227.https://doi.org/10.3390/systems10060227
  30. Bhagatkar, P. M., & Lamba, A. (2024). An Empirical Review of Innovative Soil Improvement Techniques in Geotechnical Engineering. Mesopotamian Journal of Civil Engineering, 2024, 42-53.https://doi.org/10.58496/MJCE/2024/007
  31. Brandão, R., & Verissimo, L. (2024). Circular economy adoption in construction: A pathway to sustainable development and UN SDG 11 achievement. In An agenda for sustainable development research (pp. 213-230). Cham: Springer Nature Switzerland.https://doi.org/10.1007/978-3-031-65909-6_13
  32. Bremer, K., Alwis, L. S. M., Zheng, Y., Weigand, F., Kuhne, M., Helbig, R., & Roth, B. (2019). Durability of Functionalized Carbon Structures with Optical Fiber Sensors in a Highly Alkaline Concrete Environment. Applied Sciences, 9(12), 2476. https://doi.org/10.3390/app9122476
  33. Butle, V. V., Srinivasan, V., Reddy, D. S., & Gouda, J. (2025). Comparative assessment of limestone-calcined clay blend and fly ash as binders in roller-compacted concrete pavement: evaluation of fresh and hardened properties. Road Materials and Pavement Design, 1-36.https://doi.org/10.1080/14680629.2025.2486526
  34. Chatrabhuj, & Meshram, K. (2024). Use of geosynthetic materials as soil reinforcement: an alternative eco-friendly construction material. Discover Civil Engineering, 1(1), 41.https://doi.org/10.1007/s44290-024-00050-6
  35. Chen, X., Wang, H., Horton, R., DeFlorio, J. (2021). Life-cycle assessment of climate change impact on time-dependent carbon-footprint of asphalt pavement, Transportation Research Part D: Transport and Environment, 91, 102697.https://doi.org/10.1016/j.trd.2021.102697
  36. Chen, D., Wang, S., Wang, C., Zhang, X., & Chen, N. (2025). Enhanced sensor web services by incorporating IoT interface protocols and spatio-temporal data streams for edge computing-based sensing. Geo-spatial Information Science, 1-18.https://doi.org/10.1080/10095020.2025.2450510
  37. Cheng, Z., Xie, Z., Wei, M., Peng, Y., Du, C., Tian, Y., & Song, X. (2024). Review of sensor-based subgrade distress identifications. Sensors, 24(9), 2825.https://doi.org/10.3390/s24092825
  38. Chitkeshwar, A. (2024). Revolutionizing structural engineering: applications of machine learning for enhanced performance and safety. Archives of Computational Methods in Engineering, 31(8), 4617-4632.https://doi.org/10.1007/s11831-024-10117-3
  39. Chu, X., Dawson, A., Thom, N., Chen, H., & Qin, L. (2024). Permanent deformation characteristics of unsaturated subgrade soils under cyclic loading. Case Studies in Construction Materials, 20, e03099.https://doi.org/10.1016/j.cscm.2024.e03099
  40. Correia, J.F.O, Haselibozchaloee, D., Zhu, S. (2025). A review on fatigue design of offshore structures. International Journal of Ocean Systems Management (IJOSM), Vol. 2, No. 1, 2025.https://doi.org/10.1504/IJOSM.2025.10071741
  41. [4] Culberson, M. G. (2025). Software Developer, Analyst, and Consultant Communication Strategies in Enterprise Resource Planning Projects (Doctoral dissertation, Walden University).
  42. Cui, Y., Bai, J., Chang, I. S., & Wu, J. (2024). A systematic review of phosphogypsum recycling industry based on the survey data in China–applications, drivers, obstacles, and solutions. Environmental Impact Assessment Review, 105, 107405.https://doi.org/10.1016/j.eiar.2023.107405
  43. Dąbrowska, J., Kiersnowska, A., Zięba, Z., & Trach, Y. (2023). Sustainability of geosynthetics-based solutions. Environments, 10(4), 64.https://doi.org/10.3390/environments10040064
  44. Datta, S. D., Islam, M., Sobuz, M. H. R., Ahmed, S., & Kar, M. (2024). Artificial intelligence and machine learning applications in the project lifecycle of the construction industry: A comprehensive review. Heliyon, 10(5).https://doi.org/10.1016/j.heliyon.2024.e26888
  45. De Feo, G., & Ferrara, C. (2024). Advancing communication in solid waste management: leveraging life cycle thinking for environmental sustainability. Environmental Technology Reviews, 13(1), 441-460.https://doi.org/10.1080/21622515.2024.2362448
  46. [5] de Haes, S., & Lucas, P. (2024). Environmental impacts of extraction and processing of raw materials for the energy transition. PBL Netherlands Environmental Assessment Agency: The Hague, The Netherlands.
  47. de Melo, D. L., Kendall, A., & DeJong, J. T. (2024). Evaluation of life cycle assessment (LCA) use in geotechnical engineering. Environmental Research: Infrastructure and Sustainability, 4(1), 012001.https://doi.org/10.1088/2634-4505/ad2154
  48. Deger, T. T., & Guler, E. (2024). A Case Study of a 42-m High GRS Retaining Structure and CO2 Footprint Reduction due to the use of Marginal Backfill Available on site. International Journal of Geosynthetics and Ground Engineering, 10(3), 37.https://doi.org/10.1007/s40891-024-00553-3
  49. Dwivedi, S., & Suman, S. K. (2023). A comprehensive review on non-destructive testing using LWD and Geogauge for quick QC/QA of pavement layers. Innovative Infrastructure Solutions, 8(3), 101.https://doi.org/10.1007/s41062-023-01061-5
  50. Eke, C. I., & Shuib, L. (2025). The role of explainability and transparency in fostering trust in AI healthcare systems: a systematic literature review, open issues and potential solutions. Neural Computing and Applications, 37(4), 1999-2034.https://doi.org/10.1007/s00521-024-10868-x
  51. Elahi, M., Afolaranmi, S. O., Martinez Lastra, J. L., & Perez Garcia, J. A. (2023). A comprehensive literature review of the applications of AI techniques through the lifecycle of industrial equipment. Discover Artificial Intelligence, 3(1), 43.https://doi.org/10.1007/s44163-023-00089-x
  52. El Hajj, C. I., & Martínez Montes, G. (2025). Examining green building practices: the influence on building information modeling function diffusion. Sustainability, 17(9), 3843.https://doi.org/10.3390/su17093843
  53. Esen, A. F., Woodward, P. K., Laghrouche, O., & Connolly, D. P. (2023). Long-term performance assessment of a geosynthetic-reinforced railway substructure. Sustainability, 15(12), 9364.https://doi.org/10.3390/su15129364
  54. Fagone, C., Santamicone, M., & Villa, V. (2023). Architecture engineering and construction industrial framework for circular economy: Development of a circular construction site methodology. Sustainability, 15(3), 1813.https://doi.org/10.3390/su15031813
  55. Farghali, M., Osman, A. I., Mohamed, I. M., Chen, Z., Chen, L., Ihara, I., ... & Rooney, D. W. (2023). Strategies to save energy in the context of the energy crisis: a review. Environmental Chemistry Letters, 21(4), 2003-2039. https://doi.org/10.1007/s10311-023-01591-5
  56. [6] FHWA-HIF-18-055 (2018). Foundation Reuse for Highway Bridges. U.S. Department of Transportation Federal Highway Administration. Turner-Fairbank Highway Research Center 6300 Georgetown Pike. https://www.fhwa.dot.gov/publications/research/infrastructure/structures/18055/hif18055.pdf?utm_source=chatgpt.com (Accessed 14-08-2025).
  57. [7] FHWA-HIF-24-085 (2024). Long-Term Monitoring of Post-Tensioning Tendon Force Using Optical Fiber Technology. Tech Brief (FHWA-HIF-24-085). July 2024. https://www.fhwa.dot.gov/bridge/concrete/hif24085.pdf?utm_source=chatgpt.com (Accessed 14-08-2025)
  58. Firoozi, A. A., Firoozi, A. A., Aati, K., Khan, A. H., & Vambol, V. (2025a). Integrating the Fourth Industrial Revolution into Geotechnical Engineering: Transformations, Challenges, and Future Directions. Ecological Questions, 36(1), 1-41.https://doi.org/10.12775/EQ.2025.012
  59. Firoozi, A. A., Firoozi, A. A., Maghami, M.R. (2025b). Sustainable practices in geotechnical engineering: Forging pathways for resilient infrastructure. Results in Engineering, 26(2025), 105577.https://doi.org/10.1016/j.rineng.2025.105577
  60. Flemming, H. C., van Hullebusch, E. D., Little, B. J., Neu, T. R., Nielsen, P. H., Seviour, T., ... & Wuertz, S. (2025). Microbial extracellular polymeric substances in the environment, technology and medicine. Nature Reviews Microbiology, 23(2), 87-105. https://doi.org/10.1038/s41579-024-01098-y
  61. Fnais, A., Rezgui, Y., Petri, I., Beach, T., Yeung, J., Ghoroghi, A., & Kubicki, S. (2022). The application of life cycle assessment in buildings: challenges, and directions for future research. The International Journal of Life Cycle Assessment, 27(5), 627-654.https://doi.org/10.1007/s11367-022-02058-5
  62. Freddi F, Mingazzi L, Pozzi E, Aresi N. (2023) Laboratory Assessment of an In-Place Inclinometer Chain for Structural and Geotechnical Monitoring. Sensors (Basel). 2023 Oct 10; 23(20): 8379.https://doi.org/10.3390/s23208379
  63. [8] Förster, A. (2022). Science Day 22: built and lived environment-towards a sustainable, livable, urban, and regional futurePop-Up Campus in Aachen on 30 June 2022urban health solutions, carbon sink solutions & materials, built-as-resource solutions, climate change adaptation, agile infrastructure solutionsbook of abstracts.
  64. Fuentes-Peñailillo, F., Gutter, K., Vega, R., & Silva, G. C. (2024). Transformative technologies in digital agriculture: Leveraging Internet of Things, remote sensing, and artificial intelligence for smart crop management. Journal of Sensor and Actuator Networks, 13(4), 39.https://doi.org/10.3390/jsan13040039
  65. Gaur, M. K., Shrivastava, A., & Pandit, R. K. (2024). Performance analysis and sustainability assessment of a building integrated solar PV system. International Journal of Ambient Energy, 45(1), 2283762.https://doi.org/10.1080/01430750.2023.2283762
  66. Ghoroghi, A., Rezgui, Y., Petri, I., & Beach, T. (2022). Advances in application of machine learning to life cycle assessment: a literature review. The International Journal of Life Cycle Assessment, 27(3), 433-456.https://doi.org/10.1007/s11367-022-02030-3
  67. Govers, M., & Van Amelsvoort, P. (2023). A theoretical essay on socio-technical systems design thinking in the era of digital transformation. Gruppe. Interaktion. Organisation. Zeitschrift für Angewandte Organisationspsychologie (GIO), 54(1), 27-40.https://doi.org/10.1007/s11612-023-00675-8
  68. Gruber, M. R., & Hofko, B. (2023). Life Cycle Assessment of Greenhouse Gas Emissions from Recycled Asphalt Pavement Production. Sustainability, 15(5), 4629. https://doi.org/10.3390/su15054629
  69. Gupta, S., & Kumar, S. (2023). A state-of-the-art review of the deep soil mixing technique for ground improvement. Innovative Infrastructure Solutions, 8(4), 129. https://doi.org/10.1007/s41062-023-01098-6
  70. Gursel, A. P., Shehabi, A., & Horvath, A. (2023). Embodied energy and greenhouse gas emission trends from major construction materials of US office buildings constructed after the mid-1940s. Building and Environment, 234, 110196.https://doi.org/10.1016/j.buildenv.2023.110196
  71. Harle, S. M. (2024, February). Durability and long-term performance of fiber reinforced polymer (FRP) composites: A review. In Structures (Vol. 60, p. 105881). Elsevier.https://doi.org/10.1016/j.istruc.2024.105881
  72. Hassan, W., Farooq, K., Mujtaba, H., Alshameri, B., Shahzad, A., Nawaz, M. N., & Azab, M. (2023). Experimental investigation of mechanical behavior of geosynthetics in different soil plasticity indexes. Transportation Geotechnics, 39, 100935.https://doi.org/10.1016/j.trgeo.2023.100935
  73. [9] Hong, C. Y., Yuan, S., Chen, W. B., Zhang, J., Xie, X. F., & Wang, D. C. (2024). Design, fabrication, and application of graphene sensor for geogrid strain measurement. Geosynthetics International, 1-13.
  74. Hoxha, E., & Birgisdottir, H. (2025). Recycling and reusing a robust solution, or a utopia for lowering the greenhouse gas emissions of buildings? The case of Denmark. The International Journal of Life Cycle Assessment, 1-13.https://doi.org/10.1007/s11367-025-02507-x
  75. Huang, J., and Ai, Q. (2025) Key vulnerability parameters for steel pipe pile-supported wharves considering the uncertainties in structural design. International Journal of Ocean Systems Management (IJOSM), Vol. 2, No. 1, 2025.https://doi.org/10.1504/IJOSM.2025.146803
  76. Huang, W., Hu, J., & Luo, S. (2024a). The technological innovation pathway for green, low-carbon, and durable pavement construction and maintenance. Science China Technological Sciences, 67(12), 3959-3961.https://doi.org/10.1007/s11431-024-2733-6
  77. Huang, X., Wang, S., Yang, D., Hu, T., Chen, M., Zhang, M., ... & Hohl, A. (2024b). Crowdsourcing geospatial data for earth and human observations: A review. Journal of Remote Sensing, 4, 0105.https://doi.org/10.34133/remotesensing.0105
  78. Husainy, A. S., Mangave, S. S., Ingale, A. S., Patil, Y. R., & Koganole, M. (2024). Innovation ecosystems and green building techniques for a sustainable future: Leveraging advanced technologies. The Asian Review of Civil Engineering, 13(2), 1-10.https://doi.org/10.70112/tarce-2024.13.2.4233
  79. Hussein, M. Y. A., Musa, A., Altaharwah, Y., & Al-Kfouf, S. (2024). Integrating machine learning in architectural engineering sustainable design: a sub-hourly approach to energy and indoor climate management in buildings. Asian Journal of Civil Engineering, 25(5), 4107-4119.https://doi.org/10.1007/s42107-024-01034-8
  80. Ieva, S., Loconte, D., Loseto, G., Ruta, M., Scioscia, F., Marche, D., & Notarnicola, M. (2024). A retrieval-augmented generation approach for data-driven energy infrastructure digital twins. Smart Cities, 7(6), 3095-3120.https://doi.org/10.3390/smartcities7060121
  81. Ige, O. E., Von Kallon, D. V., & Desai, D. (2024). Carbon emissions mitigation methods for cement industry using a systems dynamics model. Clean Technologies and Environmental Policy, 26(3), 579-597. https://doi.org/10.1007/s10098-023-02683-0
  82. Islam, M., Jamil, H. M. M., Pranto, S. A., Das, R. K., Amin, A., & Khan, A. (2024). Future industrial applications: Exploring lpwan-driven iot protocols. Sensors, 24(8), 2509.https://doi.org/10.3390/s24082509
  83. Jiang, C. S., Chen, X., Jiang, B. Y., & Liang, G. Q. (2024). Hybrid genetic algorithm and support vector regression for predicting the shear capacity of recycled aggregate concrete beam. Soft Computing, 28(2), 1023-1039. https://doi.org/10.1007/s00500-023-09380-6
  84. John, C. K., Ajibade, F. O., Ajibade, T. F., Kumar, P., Fadugba, O. G., & Adelodun, B. (2025a). The impact of international agreements and government policies on collaborative management of environmental pollution and carbon emissions in the transportation sector. Environmental Impact Assessment Review, 114, 107930.https://doi.org/10.1016/j.eiar.2025.107930
  85. John, C.K., Ajibade, F.O., Ajibade, T.F., Kumar, P., Adelodun, B., Adewumi, J.R. (2025b). Navigating Circular Horizons: Introduction to the Concept of Circular Economy and Environmental Resilience. In: Singh, P., Daga, S., Yadav, K., Mishra, V. (eds) Circular Economy and Environmental Resilience. Springer, Cham. https://doi.org/10.1007/978-3-031-93091-1_2
  86. John, C. K., & Pu, J. H. (2023). Household reusable rainwater technology for developing and under-developed countries. Routledge.https://doi.org/10.1201/9781003392576
  87. John, C. K., Pu, J. H., Guo, Y., Keating, M., Al-Qadami, E. H. H., Razi, M. A. M., & Hanmaiahgari, P. R. (2024). 3D numerical modelling and laboratory study of flow field induced by a group of submerged vegetations. Ocean Engineering, 312, 119038.https://doi.org/10.1016/j.oceaneng.2024.119038
  88. John, C. K., Pu, J. H., Guo, Y., Hanmaiahgari, P. R., & Pandey, M. (2023). Flow turbulence presented by different vegetation spacing sizes within a submerged vegetation patch. Journal of Hydrodynamics, 35(6), 1131-1145.https://doi.org/10.1007/s42241-024-0083-x
  89. Joseph, A. M., Snellings, R., Van den Heede, P., Matthys, S., & De Belie, N. (2018). The use of municipal solid waste incineration ash in various building materials: a Belgian point of view. Materials, 11(1), 141.https://doi.org/10.3390/ma11010141
  90. Ju, M., Dou, Z., Li, J. W., Qiu, X., Shen, B., Zhang, D., ... & Wang, K. (2023). Piezoelectric materials and sensors for structural health monitoring: fundamental aspects, current status, and future perspectives. Sensors, 23(1), 543.https://doi.org/10.3390/s23010543
  91. Kalali, E. N., Lotfian, S., Shabestari, M. E., Khayatzadeh, S., Zhao, C., & Nezhad, H. Y. (2023). A critical review of the current progress of plastic waste recycling technology in structural materials. Current Opinion in Green and Sustainable Chemistry, 40, 100763.https://doi.org/10.1016/j.cogsc.2023.100763
  92. Kandpal, V., Jaswal, A., Santibanez Gonzalez, E. D., & Agarwal, N. (2024). Circular economy principles: shifting towards sustainable prosperity. In Sustainable energy transition: Circular economy and sustainable financing for environmental, social and governance (ESG) practices (pp. 125-165). Cham: Springer Nature Switzerland.https://doi.org/10.1007/978-3-031-52943-6_4
  93. Kantaros, A., Zacharia, P., Drosos, C., Papoutsidakis, M., Pallis, E., & Ganetsos, T. (2025). Smart Infrastructure and Additive Manufacturing: Synergies, Advantages, and Limitations. Applied Sciences, 15(7), 3719.https://doi.org/10.3390/app15073719
  94. Karadumpa, C. S., & Pancharathi, R. K. (2024). Study on energy use and carbon emission from manufacturing of OPC and blended cements in India. Environmental Science and Pollution Research, 31(4), 5364-5383.https://doi.org/10.1007/s11356-023-31593-3
  95. Kazemi, M., Parikhah Zarmehr, S., Yazdani, H., & Fini, E. (2023). Review and perspectives of end-of-life tires applications for fuel and products. Energy & Fuels, 37(15), 10758-10774.https://doi.org/10.1021/acs.energyfuels.3c00459
  96. KC, A. K., Ghimire, A., Adhikari, B., Aryal, A., & Baral, B. (2025). Embodied energy and associated carbon emission of key building materials in Nepal. Discover Environment, 3(1), 15.https://doi.org/10.1007/s44274-025-00194-x
  97. Keskin, T., Yilmaz, E., Kasap, T., Sari, M., & Cao, S. (2024). Toward viable industrial solid residual waste recycling: a review of its innovative applications and future perspectives. Minerals, 14(9), 943.https://doi.org/10.3390/min14090943
  98. Kilani, A. J., Ikotun, B. D., & Abdulwahab, R. (2024). Effect of crumb rubber on concrete’s and mortar’s structural properties: a review. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 1-31.https://doi.org/10.1007/s40996-024-01647-8
  99. Kumar, D., Maurya, K. K., Mandal, S. K., Mir, B. A., Nurdiawati, A., & Al-Ghamdi, S. G. (2025). Life Cycle Assessment in the Early Design Phase of Buildings: Strategies, Tools, and Future Directions. Buildings, 15(10), 1612.https://doi.org/10.3390/buildings15101612
  100. Lekshmi, G. S., Prasad, K., Alexander, K., & Kumaravel, V. (2025). Innovative and sustainable approaches to NIR-active coatings for next-generation medical devices. Chemical Communications, 61(54), 9736-9752.https://doi.org/10.1039/D5CC02164B
  101. Liang, H., Wang, J., Zhang, L., Liu, J., & Wang, S. (2022). Review of Optical Fiber Sensors for Temperature, Salinity, and Pressure Sensing and Measurement in Seawater. Sensors, 22(14), 5363. https://doi.org/10.3390/s22145363
  102. Lillian, N., Ahmed, S. B., Krishnan, D., & Eze, V. H. U. (2025). Comprehensive evaluation of sub-base materials for road pavements, integrating California bearing ratio and triaxial compression tests for enhanced stability and durability: A systematic review. Discover Civil Engineering, 2(1), 116.https://doi.org/10.1007/s44290-025-00278-w
  103. Lin, S., Liang, Z., Guo, H., Hu, Q., Cao, X., & Zheng, H. (2025). Application of machine learning in early warning system of geotechnical disaster: a systematic and comprehensive review. Artificial Intelligence Review, 58(6), 168.https://doi.org/10.1007/s10462-025-11175-0
  104. Liu, C. H., & Hung, C. (2023). Reutilization of solid wastes to improve the hydromechanical and mechanical behaviors of soils—a state-of-the-art review. Sustainable Environment Research, 33(1), 17.https://doi.org/10.1186/s42834-023-00179-6
  105. Liu, H., Li, M., Cheng, J. C., Anumba, C. J., & Xia, L. (2025a). Actual construction cost prediction using hypergraph deep learning techniques. Advanced Engineering Informatics, 65, 103187.https://doi.org/10.1016/j.aei.2025.103187
  106. Liu, T., Fu, Y., Li, K., Zhou, A., Qin, R., Zou, D. (2025b). Experimental investigation and theoretical analysis of long-term performance for optical fiber Bragg grating-fiber reinforced composite in alkaline concrete environment, Case Studies in Construction Materials, 22, e04130, ISSN 2214-5095.https://doi.org/10.1016/j.cscm.2024.e04130
  107. Liu, X., Wu, H., Yu, D., Chen, Y., & Wu, H. (2025c). A Construction and Representation Learning Method for a Traffic Accident Knowledge Graph Based on the Enhanced TransD Model. Applied Sciences, 15(11), 6031.https://doi.org/10.3390/app15116031
  108. Lu, L. (2024). Optimal replacement ratio of recycled concrete aggregate balancing mechanical performance with sustainability: A review. Buildings, 14(7), 2204.https://doi.org/10.3390/buildings14072204
  109. Mackay‐Roberts, N., Bock, C., Lannig, G., Lucassen, M., Paul, N., Schaum, E., ... & Gerdts, G. (2024). A benthic mesocosm system for long‐term multi‐factorial experiments applying predicted warming and realistic microplastic pollution scenarios. Limnology and Oceanography: Methods, 22(12), 910-929.https://doi.org/10.1002/lom3.10653
  110. Madanchian, M., & Taherdoost, H. (2024). AI-Powered Innovations in High-Tech Research and Development: From Theory to Practice. Computers, Materials & Continua, 81(2).https://doi.org/10.32604/cmc.2024.057094
  111. Malekmohammadi, K., & Damians, I. P. (2024). A bibliometric review of reinforced soil wall research topics. International Journal of Geosynthetics and Ground Engineering, 10(3), 42.https://doi.org/10.1007/s40891-024-00537-3
  112. Mannucci, S. (2025). Beyond Sustainability: Paradigms for Complexity and Resilience in the Built Environment. Urban Science, 9(6), 212.https://doi.org/10.3390/urbansci9060212
  113. Marchiori, L., Albuquerque, A., Andrade Pais, L., Boscov, M. E. G., & Cavaleiro, V. (2025). Geoenvironmental Engineered Structures for Water Protection: Challenges and Perspectives for Sustainable Liners. Sustainability (2071-1050), 17(5).https://doi.org/10.3390/su17051850
  114. Mariyappan, R., Palammal, J. S., & Balu, S. (2023). Sustainable use of reclaimed asphalt pavement (RAP) in pavement applications—a review. Environmental Science and Pollution Research, 30(16), 45587-45606.https://doi.org/10.1007/s11356-023-25847-3
  115. Markiewicz, A., Koda, E., & Kawalec, J. (2022). Geosynthetics for filtration and stabilisation: a review. Polymers, 14(24), 5492.https://doi.org/10.3390/polym14245492
  116. Markiewicz, A., Koda, E., Kiraga, M., Wrzesiński, G., Kozanka, K., Naliwajko, M., & Vaverková, M. D. (2024). Polymeric products in erosion control applications: a review. Polymers, 16(17), 2490.https://doi.org/10.3390/polym16172490
  117. Martínez-Martínez, S., Pérez-Villarejo, L., Eliche-Quesada, D., & Sánchez-Soto, P. J. (2023). New types and dosages for the manufacture of low-energy cements from raw materials and industrial waste under the principles of the circular economy and low-carbon economy. Materials, 16(2), 802.https://doi.org/10.3390/ma16020802
  118. Mazurowski, P., Zamara, K., Gewanlal, C., & Kawalec, J. (2022). Experiences with the use of stabilisation geogrids in demonstrating an improvement in bearing capacity of recycled materials. In Proceedings of the Eleventh International Conference on the Bearing Capacity of Roads, Railways and Airfields. CRC Press-Taylor & Francis Group.https://doi.org/10.1201/9781003222880-18
  119. Mehta, V. (2024). Sustainable approaches in concrete production: an in-depth review of waste foundry sand utilization and environmental considerations. Environmental Science and Pollution Research, 31(16), 23435-23461.https://doi.org/10.1007/s11356-024-32785-1
  120. Melhem, M. M., & Caprani, C. C. (2022). Promoting probability-based bridge assessment in engineering practice: an Australian case study. Structure and Infrastructure Engineering, 18(10-11), 1472-1486.https://doi.org/10.1080/15732479.2022.2061017
  121. Meng, D., & Zhu, S.P. (2024). Multidisciplinary Design Optimization of Complex Structures Under Uncertainty (1st ed.). CRC Press.https://doi.org/10.1201/9781003464792-1
  122. Meng, D., Yang, S.,, Yang, H., De Jesus, A.M.P., Correia, J., and Zhu, S. (2024). Intelligent-inspired framework for fatigue reliability evaluation of offshore wind turbine support structures under hybrid uncertainty, Ocean Engineering, 307, 118213. https://doi.org/10.1016/j.oceaneng.2024.118213
  123. Mishra, U. C., Sarsaiya, S., & Gupta, A. (2022). A systematic review on the impact of cement industries on the natural environment. Environmental Science and Pollution Research, 29(13), 18440-18451. https://doi.org/10.1007/s11356-022-18672-7
  124. Miller, W. G., Myers, G., Cobbaert, C. M., Young, I. S., Theodorsson, E., Wielgosz, R. I., ... & Gillery, P. (2023). Overcoming challenges regarding reference materials and regulations that influence global standardization of medical laboratory testing results. Clinical Chemistry and Laboratory Medicine (CCLM), 61(1), 48-54.https://doi.org/10.1515/cclm-2022-0943
  125. Mohammed, M., Mohammed, A., Ihmedee, F., Adam, T., Betar, B., & Gopinath, S. (2025). Emerging artificial intelligence methods in civil engineering: A Comprehensive Review. Al-Rafidain Journal of Engineering Sciences, 280-293.https://doi.org/10.61268/939e6941
  126. Molęda, M., Małysiak-Mrozek, B., Ding, W., Sunderam, V., & Mrozek, D. (2023). From corrective to predictive maintenance—A review of maintenance approaches for the power industry. Sensors, 23(13), 5970.https://doi.org/10.3390/s23135970
  127. Nafees, A., Khan, S., Javed, M. F., Alrowais, R., Mohamed, A. M., Mohamed, A., & Vatin, N. I. (2022). Forecasting the mechanical properties of plastic concrete employing experimental data using machine learning algorithms: DT, MLPNN, SVM, and RF. Polymers, 14(8), 1583.https://doi.org/10.3390/polym14081583
  128. Nagaraju, T. V., & Ravindran, G. (2025). Ground Improvement Techniques for Sustainable Engineering. Bentham Science Publishers.https://doi.org/10.2174/97898153056301250101
  129. Najjar, S., & El-Chiti, I. (2023). Reliability-Based Design with Numerical Models. In Uncertainty, Modeling, and Decision Making in Geotechnics (pp. 319-350). CRC Press.https://doi.org/10.1201/9781003333586-11
  130. Naskar, J., Kumar Jha, A., Singh, T. N., & Aeron, S. (2025). Climate change and soil resilience: a critical appraisal on innovative techniques for sustainable ground improvement and ecosystem protection. Journal of Hazardous, Toxic, and Radioactive Waste, 29(4), 03125002.https://doi.org/10.1061/JHTRBP.HZENG-1465
  131. Nanehkaran, Y. A., Chen, B., Cemiloglu, A., Chen, J., Anwar, S., Azarafza, M., & Derakhshani, R. (2023). Riverside landslide susceptibility overview: leveraging artificial neural networks and machine learning in accordance with the United Nations (UN) sustainable development goals. Water, 15(15), 2707.https://doi.org/10.3390/w15152707
  132. Neupane, R. P., Imjai, T., Makul, N., Garcia, R., Kim, B., & Chaudhary, S. (2023). Use of recycled aggregate concrete in structural members: A review focused on Southeast Asia. Journal of Asian Architecture and Building Engineering, 1-24.https://doi.org/10.1080/13467581.2023.2270029
  133. Nyame, M., & Adesanmi, B. M. (2024). Innovative Geotechnical Solutions for Sustainable Infrastructure Development. Journal of Scientific Research and Reports, 30(9), 719-727.https://doi.org/10.9734/jsrr/2024/v30i92399
  134. [10] Obar, F. Y. T. (2023). Investigation of the Sustainable Production and Utilization of Biochar and Activated Carbon From Waste (Master's thesis, Hamad Bin Khalifa University (Qatar)).
  135. Omrany, H., Al-Obaidi, K. M., Husain, A., & Ghaffarianhoseini, A. (2023). Digital twins in the construction industry: a comprehensive review of current implementations, enabling technologies, and future directions. Sustainability, 15(14), 10908.https://doi.org/10.3390/su151410908
  136. Oshilalu, A. Z. (2024). Sustainability meets scalability: transforming energy infrastructure projects into economic catalysts through supply chain innovation. International Journal of Research Publication and Reviews, 5(12), 762-779.https://doi.org/10.55248/gengpi.5.1224.3417
  137. Ouaissa, M., Ouaissa, M., Boulouard, Z., El Himer, S., & Khan, I. U. (2024). Low-power wide area network for large-scale IoT: Fundamentals, technologies, and challenges. In Low-Power Wide Area Network for Large Scale Internet of Things (pp. 1-14). CRC Press.https://doi.org/10.1201/9781003426974-1
  138. Panagiotidou, E., Chountalas, P. T., Magoutas, A. Ι., & Kitsios, F. C. (2025). The multifaceted impact of ISO/IEC 17025 accreditation: a sector-specific analysis in civil engineering testing and calibration laboratories. The TQM Journal, 37(4), 998-1035.https://doi.org/10.1108/TQM-10-2023-0347
  139. Peng, Y., Cai, S., Huang, Y., & Chen, X. F. (2025). Recycled Aggregates for Sustainable Construction: Strengthening Strategies and Emerging Frontiers. Materials, 18(13), 3013.https://doi.org/10.3390/ma18133013
  140. Perera, M. A. G. P., & Ranjith, P. G. (2025). Greener horizons: Revolutionizing construction materials with waste-based innovations-An experimental study. Journal of Building Engineering, 103, 112211.https://doi.org/10.1016/j.jobe.2025.112211
  141. Pettinaroli, A., Susani, S., Castellanza, R., Collina, E., Pierani, M., Paoli, R., & Romagnoli, F. (2023). A sustainability-based approach for geotechnical infrastructure. Environmental and Climate Technologies, 27(1), 738-752.https://doi.org/10.2478/rtuect-2023-0054
  142. Plati, C., & Tsakoumaki, M. (2023). Life Cycle Assessment (LCA) of Alternative Pavement Rehabilitation Solutions: A Case Study. Sustainability, 15(3), 2129. https://doi.org/10.3390/su15032129
  143. Portan, D. V., Koliadima, A., Kapolos, J., & Azamfirei, L. (2025). Biomimetic Design and Assessment via Microenvironmental Testing: From Food Packaging Biomaterials to Implantable Medical Devices. Biomimetics, 10(6), 370.https://doi.org/10.3390/biomimetics10060370
  144. Porter, E. T., & Cornwell, J. C. (2024). Mesocosm approaches to the examination of benthic–pelagic coupling, with emphasis on turbulence. Limnology and Oceanography, 69, S67-S87.https://doi.org/10.1002/lno.12425
  145. Prakash K, K., Rathod, D., & Muthukkumaran, K. (2025). Role of Geogrid reinforcement and its diverse applications in the geotechnical engineering and allied fields: a-state-of-the-art review. Australian Journal of Civil Engineering, 23(1), 32-50.https://doi.org/10.1080/14488353.2023.2205674
  146. Primo, G. S., Silva, R., Evangelista Jr, F., & Oliveira, M. H. (2025). Statistical Reliability Analysis for Assessing Bridge Structural Integrity: A Review Paper. Infrastructures, 10(7), 156.https://doi.org/10.3390/infrastructures10070156
  147. Rajczakowska, M., Kothari, A., Buasiri, T., & Cwirzen, A. (2025). Recycled and mechanically activated concrete fines as a complete substitute for Portland cement-feasibility and life cycle assessment. Case Studies in Construction Materials, e04798.https://doi.org/10.1016/j.cscm.2025.e04798
  148. Rane, N. (2023). Integrating leading-edge artificial intelligence (AI), internet of things (IOT), and big data technologies for smart and sustainable architecture, engineering and construction (AEC) industry: Challenges and future directions. Engineering and Construction (AEC) Industry: Challenges and Future Directions (September 24, 2023).https://doi.org/10.2139/ssrn.4616049
  149. Rane, N., Choudhary, S., & Rane, J. (2023). Leading-edge Artificial Intelligence (AI) and Internet of Things (IoT) technologies for enhanced geotechnical site characterization. Available at SSRN 4640926.https://doi.org/10.2139/ssrn.4640926
  150. Rane, N., Choudhary, S., & Rane, J. (2024). Artificial intelligence for enhancing resilience. Journal of Applied Artificial Intelligence, 5(2), 1-33.https://doi.org/10.48185/jaai.v5i2.1053
  151. [11] Reddy, K. R., Janga, J. K., & Kumar, G. (2024). Sustainability and resilience: A new paradigm in geotechnical and geoenvironmental engineering. Indian Geotechnical Journal, 1-22.
  152. Rianna, G., Reder, A., Sousa, M. L., & Dimova, S. (2023). Harmonised procedure to update thermal loads in the Eurocodes. Case study for Italy. Climate Services, 30, 100391.https://doi.org/10.1016/j.cliser.2023.100391
  153. [12] Rohde, E. (2023). Life Cycle Assessment of a Steel-Timber Composite Structure Comparison to an Established Structural System (Master's thesis, Auburn University).
  154. [13] Roswag-Klinge, E., Lützkendorf, T., Passer, A., Habert, G., & Wellner, K. (2022). sbe22 berlin–Built environment within planetary boundaries (p. 343). Universitätsverlag der Technischen Universität Berlin.
  155. Roychand, R., Li, J., Kilmartin-Lynch, S., Saberian, M., Zhu, J., Youssf, O., & Ngo, T. (2023). Carbon sequestration from waste and carbon dioxide mineralisation in concrete–A stronger, sustainable and eco-friendly solution to support circular economy. Construction and Building Materials, 379, 131221.https://doi.org/10.1016/j.conbuildmat.2023.131221
  156. Passoni, C., Caruso, M., Marini, A., Pinho, R., & Landolfo, R. (2022). The role of life cycle structural engineering in the transition towards a sustainable building renovation: Available tools and research needs. Buildings, 12(8), 1107.https://doi.org/10.3390/buildings12081107
  157. [14] Saad, A. G., Sakr, M. A., Khalifa, T. M., & Darwish, E. A. (2024). Structural performance of concrete reinforced with crumb rubber: a review of current research. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 1-44.
  158. Saad, A. H., Nahazanan, H., Yusuf, B., Toha, S. F., Alnuaim, A., El-Mouchi, A., ... & Mohammed, A. A. (2023). A systematic review of machine learning techniques and applications in soil improvement using green materials. Sustainability, 15(12), 9738.https://doi.org/10.3390/su15129738
  159. Sadeghi, M., Elliott, J. W., & Mehany, M. H. (2023). Information-augmented exchange objects to inform facilities management BIM guidelines: introducing the level of semantics schema. Journal of Facilities Management, 21(2), 260-281.https://doi.org/10.1108/JFM-04-2021-0044
  160. Sahani, K., Kunwar, A., Dhakal, P., Kunwar, A., Sahani, S. K., Pandey, B. K., & Pandey, D. (2025). Evaluating Properties and Applications of Innovative Recycled Aggregate Concrete. Engineering Reports, 7(6), e70251.https://doi.org/10.1002/eng2.70251
  161. Saini, H., & Ledwani, L. (2024). A review on application of green materials in different construction systems, their processing, surface modification, testing and certification. MRS Energy & Sustainability, 11(2), 267-303.https://doi.org/10.1557/s43581-024-00088-0
  162. Sakib, M. N., Kabir, G., & Ali, S. M. (2024). A life cycle analysis approach to evaluate sustainable strategies in the furniture manufacturing industry. Science of the Total Environment, 907, 167611.https://doi.org/10.1016/j.scitotenv.2023.167611
  163. Salati, M., Costa, A. A., & Silvestre, J. D. (2025). A Comprehensive Review of Dynamic Life Cycle Assessment for Buildings: Exploring Key Processes and Methodologies. Sustainability, 17(1), 159.https://doi.org/10.3390/su17010159
  164. Sandanayake, M., Law, D., & Sargent, P. (2022). A new framework for assessing the environmental impacts of circular economy friendly soil waste-based geopolymer cements. Building and environment, 210, 108702.https://doi.org/10.1016/j.buildenv.2021.108702
  165. [15] Sapkota, R., Raza, S., & Karkee, M. (2025). Comprehensive analysis of transparency and accessibility of chatgpt, deepseek, and other sota large language models. arXiv preprint arXiv:2502.18505.
  166. https://doi.org/10.20944/preprints202502.1608.v1
  167. Sartori, T., Drogemuller, R., Omrani, S., & Lamari, F. (2022). An integrative Whole Building Life Cycle Assessment (WBLCA) framework: A survey of software developers’ perspective. Building and Environment, 223, 109475.https://doi.org/10.1016/j.buildenv.2022.109475
  168. Schneider, J., Meske, C., & Kuss, P. (2024). Foundation models: A new paradigm for artificial intelligence. Business & Information Systems Engineering, 66(2), 221-231.https://doi.org/10.1007/s12599-024-00851-0
  169. Scrucca, F., Ingrao, C., Barberio, G., Matarazzo, A., & Lagioia, G. (2023). On the role of sustainable buildings in achieving the 2030 UN sustainable development goals. Environmental Impact Assessment Review, 100, 107069.https://doi.org/10.1016/j.eiar.2023.107069
  170. Shen, M., Khoshnevisan, S., Tan, X., Zhang, Y., & Juang, C. H. (2019). Assessing characteristic value selection methods for design with load and resistance factor design (LRFD)—design robustness perspective. Canadian Geotechnical Journal, 56(10), 1475-1485.https://doi.org/10.1139/cgj-2018-0038
  171. Singh, N. B., & Chaudhary, R. G. (2023). Industrial solid waste: An overview. Advanced Materials from Recycled Waste, 1-25.https://doi.org/10.1016/B978-0-323-85604-1.00018-4
  172. Singh, R. P., Vanapalli, K. R., Cheela, V. R. S., Peddireddy, S. R., Sharma, H. B., & Mohanty, B. (2023). Fly ash, GGBS, and silica fume based geopolymer concrete with recycled aggregates: Properties and environmental impacts. Construction and Building Materials, 378, 131168.https://doi.org/10.1016/j.conbuildmat.2023.131168
  173. Shah, P. M. (2024). Study on use of recycled waste materials on the performance of asphalt binder and mixes: A comprehensive review. Progress in Rubber, Plastics and Recycling Technology, 14777606241290857. https://doi.org/10.1177/14777606241290857
  174. Shamim, M. M. R. (2025). Maintenance optimization in smart manufacturing facilities: A systematic review of lean, TPM, and digitally-driven reliability models in industrial engineering. American Journal of Interdisciplinary Studies, 6(1), 144-173.https://doi.org/10.63125/xwvaq502
  175. Sharma, A., Shrivastava, N., & Lohar, J. (2023). Construction & demolition waste in geotechnical applications: a review. Materials Today: Proceedings.https://doi.org/10.1016/j.matpr.2023.05.102
  176. Shen, S. C., Khare, E., Lee, N. A., Saad, M. K., Kaplan, D. L., & Buehler, M. J. (2023). Computational design and manufacturing of sustainable materials through first-principles and materiomics. Chemical Reviews, 123(5), 2242-2275.https://doi.org/10.1021/acs.chemrev.2c00479
  177. Sheng, J., Wu, Y., Ding, H., Feng, K., Shen, Y., Zhang, Y., & Gu, N. (2024). Multienzyme‐like nanozymes: regulation, rational design, and application. Advanced Materials, 36(10), 2211210.https://doi.org/10.1002/adma.202211210
  178. Singh, A., Malshe, V., Raje, R., & Choudhari, R. (2024). Life cycle assessment (LCA) of biodegradable linear low-density polyethylene (LLDPE) manufactured in India. Journal of Environmental Management, 372, 123120.https://doi.org/10.1016/j.jenvman.2024.123120
  179. Sivasuriyan, A., Vijayan, D. S., Devarajan, P., Stefańska, A., Dixit, S., Podlasek, A., ... & Koda, E. (2024). Emerging trends in the integration of smart sensor technologies in structural health monitoring: a contemporary perspective. Sensors, 24(24), 8161.https://doi.org/10.3390/s24248161
  180. [16] Soomro, A. A., Noreen, A., Naz, S., Arshad, J.A., Majeed, M. K., Rafique, N., ... & Ahmad, B. (2025). Data-driven predictive maintenance of diesel engines using advanced machine learning and ai-based regression algorithms for accurate fault detection and real-time condition monitoring. Spectrum of engineering sciences, 3(7), 408-429.
  181. Song, X., Carlsson, C., & Nguyen, D. (2025). Life cycle assessment of geotechnical works for high-rise building construction on soft clay in Sweden. Building Research & Information, 1-17. https://doi.org/10.1080/09613218.2025.2487829
  182. [17] Song, X., Carlsson, C., Kiilsgaard, R., Bendz, D., & Kennedy, H. (2020). Life Cycle Assessment of Geotechnical Works in Building Construction: A Review and Recommendations. Sustainability, 12(20), 8442.
  183. https://doi.org/10.3390/su12208442
  184. Su S, Ju J, Ding Y, Yuan J, Cui P. A (2022) Comprehensive Dynamic Life Cycle Assessment Model: Considering Temporally and Spatially Dependent Variations. Int J Environ Res Public Health. 2022 Oct 27; 19(21): 14000. PMCID: PMC9657249.https://doi.org/10.3390/ijerph192114000
  185. Tajadod, O. E., Ravanshadnia, M., & Ghanbari, M. (2025). Integrating circular economy and life cycle assessment strategies in climate-resilient buildings: An artificial intelligence approach to enhance thermal comfort and minimize CO2 emissions in Iran. Energy, 320, 135064.https://doi.org/10.1016/j.energy.2025.135064
  186. Tang, Y., Xiao, J., Liu, Q., Xia, B., Singh, A., Lv, Z., & Song, W. (2022). Natural gravel-recycled aggregate concrete applied in rural highway pavement: Material properties and life cycle assessment. Journal of Cleaner Production, 334, 130219. https://doi.org/10.1016/j.jclepro.2021.130219
  187. Titilope O. Adebola, Neil Hoult, Ian D. Moore (2020) Distributed Strain Sensing to Study a Composite Liner for Cast Iron Water Pipe Rehabilitation. J. Test. Eval. 1 November 2020; 48 (6): 4283-4303. https://doi.org/10.1520/JTE20170497
  188. [18] Toochukwu, A. C. (2025). Sustainable construction practices: Balancing cost efficiency, environmental impact, and stakeholder collaboration. International Research Journal of Modernization in Engineering Technology and Science, 7(1), 4118-4140.
  189. Ukoba, K., Olatunji, K. O., Adeoye, E., Jen, T. C., & Madyira, D. M. (2024). Optimizing renewable energy systems through artificial intelligence: Review and future prospects. Energy & Environment, 35(7), 3833-3879.https://doi.org/10.1177/0958305X241256293
  190. [19] Verbickas, R. (2024). Efficient Convolutional Neural Networks for Low-power Automotive Processors (Doctoral dissertation, Université d'Ottawa| University of Ottawa).
  191. Wang, J., & Azam, W. (2024). Natural resource scarcity, fossil fuel energy consumption, and total greenhouse gas emissions in top emitting countries. Geoscience frontiers, 15(2), 101757.https://doi.org/10.1016/j.gsf.2023.101757
  192. Wang, X., Ren, L., Long, T., Geng, C., & Tian, X. (2023). Migration and remediation of organic liquid pollutants in porous soils and sedimentary rocks: A review. Environmental Chemistry Letters, 21(1), 479-496.https://doi.org/10.1007/s10311-022-01506-w
  193. Wang, Z. J., Chen, Z. S., Su, Q., Chin, K. S., Pedrycz, W., & Skibniewski, M. J. (2024). Enhancing the sustainability and robustness of critical material supply in electrical vehicle market: an AI-powered supplier selection approach. Annals of Operations Research, 342(1), 921-958.https://doi.org/10.1007/s10479-023-05698-4
  194. Wang, Y., Cui, X., Liu, K., & Jiang, P. (2022). Manufacture, development, and application of sensor-enabled geosynthetics: state-of-the-art review. Intelligent Transportation Infrastructure, 1, liac012.https://doi.org/10.1093/iti/liac012
  195. West, J., Siddhpura, M., Evangelista, A., & Haddad, A. (2024). Improving equipment maintenance—switching from corrective to preventative maintenance strategies. Buildings, 14(11), 3581.https://doi.org/10.3390/buildings14113581
  196. [20] Wolmarans, N. J. (2021). Ecological risk assessment of amphibians in the Phongolo River floodplain (Doctoral dissertation, University of Antwerp).
  197. Wu, J., Ye, X., & Cui, H. (2025). Recycled Materials in Construction: Trends, Status, and Future of Research. Sustainability, 17(6), 2636.https://doi.org/10.3390/su17062636
  198. Xiao, J., Shuai, J., Deng, W., Liu, L., Wang, P., & Li, L. (2025). Low-Carbon and Green Materials in Construction: Latest Advances and Prospects. Buildings, 15(9), 1508.https://doi.org/10.3390/buildings15091508
  199. Yadav, N., Kanwar, P., & Mandpe, A. (2025). Beyond landfills: transforming waste plastic into advanced building materials. In Environmental Hazards of Plastic Wastes (pp. 249-260). Elsevier.https://doi.org/10.1016/B978-0-443-23599-3.00023-X
  200. Yang, M., Chen, L., Wang, J., Msigwa, G., Osman, A. I., Fawzy, S., ... & Yap, P. S. (2023). Circular economy strategies for combating climate change and other environmental issues. Environmental chemistry letters, 21(1), 55-80.https://doi.org/10.1007/s10311-022-01499-6
  201. Yang, S., Meng, D., Yang, H., Luo, C., & Su, X. (2025c, January). Enhanced soft Monte Carlo simulation coupled with support vector regression for structural reliability analysis. In Proceedings of the Institution of Civil Engineers-Transport (pp. 1-16). Emerald Publishing Limited.https://doi.org/10.1680/jtran.24.00128
  202. Yang, S., Meng, D., Yang, H., Luo, C., Su, X., (2025a). Enhanced soft Monte Carlo simulation coupled with support vector regression for structural reliability analysis. Proceedings of the Institution of Civil Engineers - Transport 2025.https://doi.org/10.1680/jtran.24.00128
  203. Yang, S., Meng, D., Díaz, A., Yang, H., Su, X., Jesus, A.M.P (2025b). Probabilistic modeling of uncertainties in reliability analysis of mid- and high-strength steel pipelines under hydrogen-induced damage. International Journal of Structural Integrity 13 February 2025; 16 (1): 39-59.https://doi.org/10.1108/IJSI-10-2024-0177
  204. Yang, Z., Sun, J., Zhang, Y., Liu, J., Oh, E., & Ma, Z. (2025d). A systematic evaluation of the empirical relationships between the resilient modulus and permanent deformation of pavement materials. Buildings, 15(5), 663.https://doi.org/10.3390/buildings15050663
  205. Yaro, N. S. A., Sutanto, M. H., Baloo, L., Habib, N. Z., Usman, A., Yousafzai, A. K., ... & Noor, A. (2023). A comprehensive overview of the utilization of recycled waste materials and technologies in asphalt pavements: towards environmental and sustainable low-carbon roads. Processes, 11(7), 2095.https://doi.org/10.3390/pr11072095
  206. Yavan, F., Maalek, R., & Toğan, V. (2024). Structural Optimization of Trusses in Building Information Modeling (BIM) Projects Using Visual Programming, Evolutionary Algorithms, and Life Cycle Assessment (LCA) Tools. Buildings, 14(6), 1532.https://doi.org/10.3390/buildings14061532
  207. Zabielska-Adamska, K. (2025). Industrial By-Products and Waste Materials in Geotechnical Engineering Applications. In Emerging Trends in Sustainable Geotechnics: Keynote Volume of EGRWSE 2024 (pp. 47-76). Singapore: Springer Nature Singapore.https://doi.org/10.1007/978-981-96-2714-1_3
  208. Zafar, T., Ansari, M. A., & Husain, A. (2023). Soil stabilization by reinforcing natural and synthetic fibers–A state of the art review. Materials Today: Proceedings.https://doi.org/10.1016/j.matpr.2023.03.503
  209. Zhao, W., and Yang, Q. (2024). Life-cycle assessment of sustainable pavement based on the coordinated application of recycled asphalt pavement and solid waste: Environment and economy. Journal of Cleaner Production, 434, 140203.https://doi.org/10.1016/j.jclepro.2023.140203
  210. Zornberg, J. G., Subramanian, S., Roodi, G. H., Yalcin, Y., & Kumar, V. V. (2024). Sustainability benefits of adopting geosynthetics in roadway design. International Journal of Geosynthetics and Ground Engineering, 10(3), 47.https://doi.org/10.1007/s40891-024-00551-5
  211. Zong, Z., & Guan, Y. (2024). AI-driven intelligent data analytics and predictive analysis in Industry 4.0: Transforming knowledge, innovation, and efficiency. Journal of the Knowledge Economy, 1-40.https://doi.org/10.1007/s13132-024-02001-z