Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 1 (2025)

Intelligent Nanotechnology Applications in Subgrade Stabilization and Pavement Engineering

Submitted
December 10, 2025
Published
2025-12-23

Abstract

Nanotechnology has emerged as a transformative approach for enhancing the performance of subgrade soils and pavement materials through nanoscale modification in their physicochemical and mechanical behavior. This technical note represents various aspects of the nanomaterials in subgrade stabilization and pavement engineering, covering flexible and rigid pavements. Nanoparticles improve soil performance through hydration and pozzolanic reactions which subsequent result in void filling and surface modification to produce a dense soil matrix. In flexible pavements, nanomaterials enhance rutting resistance, fatigue life, moisture stability, and optical properties of asphalt binders. In rigid pavements, nanosilica and related additives refine microstructure, strengthen the interfacial transition zone, and significantly improve strength and durability of concrete. The note further highlights environmental benefits, cost efficiency, durability enhancement, and emerging role of intelligent modeling and data-driven methods for optimizing nanomaterial performance. Overall, nanotechnology offers a sustainable, high-performance, and future-ready solution for subgrade stabilization and pavement engineering applications.

References

  1. Afshin, A. - Behnood, A. (2025) Nanomaterials in asphalt pavements: A state-of-the-art review. Cleaner Waste Systems, Vol. 10, Article 100214. https://doi.org/10.1016/j.clwas.2025.100214
  2. Aldoasri, M. - Darwish, S. - Adam, M. (2017) Enhancing the durability of calcareous stone monuments of ancient Egypt using CaCO3 nanoparticles. Sustainability, Vol. 9, No. 8, pp. 1-17. https://doi.org/10.3390/su9081392
  3. Anders, K. A. - Bergsma, B. P. - Hansson, C. M. (2014) Chloride concentration in the pore solution of portland cement paste and portland cement concrete. Cement and Concrete Research, Vol. 63, No. 5, pp. 35-37. https://doi.org/10.1016/j.cemconres.2014.04.008
  4. Anggraini, V. - Asadi, A. - Farzadnia, N. - Jahangirian, H. - Huat, B. B. K. (2016) Reinforcement benefits of nanomodified coir fiber in lime-treated marine clay. Journal of Materials in Civil Engineering, Vol. 28, No. 6, pp. 6001-6005.https://doi.org/10.1061/(ASCE)MT.1943-5533.0001516
  5. Azzam, W. R. (2014) Durability of expansive soil using advanced nanocomposite stabilization. International Journal of Geomate, Vol. 7, No. 1, pp. 927-937.
  6. Balapour, M. - Joshaghani, A. - Althoey, F. (2018) Nano-SiO2 contribution to mechanical, durability, fresh and microstructural characteristics of concrete: A review. Construction and Building Materials, Vol. 181, pp. 27-41. https://doi.org/10.1016/j.conbuildmat.2018.05.266
  7. Bao, X. - Jin, Z. - Cui, H. (2019) Soil liquefaction mitigation in geotechnical engineering: An overview of recently developed methods. Soil Dynamics and Earthquake Engineering, Vol. 120, pp. 273-291. https://doi.org/10.1016/j.soildyn.2019.01.020
  8. Behbahani, H. - Ziari, H. - Kamboozia, N. - Mansour-Khakias, A. - Mirabdolazimib, M. (2015) Evaluation of performance and moisture sensitivity of glasphalt mixtures modified with nanotechnology zycosoil as an anti-stripping additive. Construction and Building Materials, Vol. 78, pp. 60-68. https://doi.org/10.1016/j.conbuildmat.2014.12.053
  9. Benzerzour, M. - Chu, D. C. - Amar, M. - Kleib, J. - Abriak, N.-E. (2024) A novel approach based on microstructural modeling and a multi-scale model to predicting the mechanical-elastic properties of cement paste. Case Studies in Construction Materials, Vol. 21, pp. e03498. https://doi.org/10.1016/j.cscm.2024.e03498
  10. Birgisson, B. - Taylor, P. - Armaghani, J. - Shah, S. P. (2010) American road map for research for nanotechnology-based concrete materials. Transportation Research Record: Journal of the Transportation Research Board, Vol. 2142, No. 1, pp. 130-137. https://doi.org/10.3141/2142-20
  11. Cardinaud, C. - Peignon, M. C. - Tessier, P. Y. (2000) Plasma etching: Principles, mechanisms, application to micro-and nanotechnologies. Applied Surface Science, Vol. 164 No. 1-4, pp. 72-83. https://doi.org/10.1016/S0169-4332(00)00328-7
  12. Chen, M. - Liu, Y. (2010) NOx removal from vehicle emissions by functionality surface of asphalt road. Journal of Hazardous Materials, Vol. 174, No. 1-3, pp. 375-379. https://doi.org/10.1016/j.jhazmat.2009.09.062
  13. Chen, S. - Zhang, X. (2012) Mechanics and pavement properties research of nanomaterial modified asphalt. Advanced Engineering Forum, Vol. 5, pp. 259-264. https://doi.org/10.4028/www.scientific.net/AEF.5.259
  14. Cheng, Y.- Shi, Z. (2019) Experimental study on nanoSiO2 improving concrete durability of bridge deck pavement in cold regions. Advances in Civil Engineering, Article ID 5284913, pp. 1-9. https://doi.org/10.1155/2019/5284913
  15. Chibuzor, O. K. - Duc, B. V. (2018) Predicting subgrade stiffness of nanostructured palm bunch ash stabilized lateritic soil for transport geotechnics purposes. Journal of GeoEngineering, Vol. 13, No. 1, pp. 167-175. https://doi.org/10.1080/19386362.2017.1322797
  16. Cui, H.- Jin, Z. - Bao, X. - Tang, W. - Dong, B. (2018) Effect of carbon fiber and nanosilica on shear properties of silty soil and the mechanisms. Construction and Building Materials, Vol. 189, pp. 286-295. https://doi.org/10.1016/j.conbuildmat.2018.08.181
  17. Devi, K. - Kumar, A. (2022) Nano-Carbon Concrete: A Futuristic Approach. 10th National Conference on Nanoscience and Instrumentation Technology, 2022, NIT Kurukshetra, India.
  18. Dey, G. - Yang, L. - Lee, K. B. - Wang, L. (2018) Characterizing molecular adsorption on biodegradable MnO2 nanoscaffolds. The Journal of Physical Chemistry C, Vol. 122, No. 50, pp. 29017-29027. https://doi.org/10.1021/acs.jpcc.8b09562
  19. Drexler, K. E. (1981) Molecular engineering an approach to the development of general capabilities for molecular manipulation. Proceedings of the National Academy of Sciences, Vol. 78, No. 9, pp. 5275-5278. https://doi.org/10.1073/pnas.78.9.5275
  20. Ewa, D. E. - Egbe, E. A. - Akeke, G. A. (2016) Effects of nanochemical on geotechnical properties of ogoja subgrade. Journal of Research Information in Civil Engineering, Vol. 13, No. 1, pp. 820-829.
  21. Ganesh, V. K. (2012) Nanotechnology in civil engineering. European Scientific Journal, Vol. 8, No. 27, pp. 96-109.
  22. Gao, W. (2024) The Application of Machine Learning in Geotechnical Engineering. Applied Sciences, Vol. 14, No. 11, 4712. https://doi.org/10.3390/app14114712
  23. Ghasabkolaei, N. - Janalizadeh, A. - Jahanshahi, M. - Roshan, N. - Seiyed, E. (2016) Physical and geotechnical properties of cementtreated clayey soil using silica nanoparticles: An experimental study. The European Physical Journal Plus, Vol. 131, No. 5, pp. 134. https://doi.org/10.1140/epjp/i2016-16134-3
  24. Ghavami, S. - Farahani, B. - Jahanbakhsh, H. - Moghadas-Nejad, F. (2018) Effects of silica fume and nano-silica on the engineering properties of kaolinite clay. AUT Journal of Civil Engineering, Vol. 2, No. 2, pp. 135-142.
  25. Golestani, B. - Nejad, F. M. - Galooyak, S. S. (2012) Performance evaluation of linear and nonlinear nanocomposite modified asphalts. Construction & Building Materials, Vol. 35, pp. 197-203. https://doi.org/10.1016/j.conbuildmat.2012.03.010
  26. Gonzalez, M. - Safiuddin, M. - Cao, J. - Tighe, S. L. (2013) Sound absorption and friction responses of nanoconcrete for rigid pavements. Transportation Research Record: Journal of the Transportation Research Board, Vol. 2369, No. 1, pp. 87-94. https://doi.org/10.3141/2369-10
  27. Guo, Z. Z. - Ma, Y. F. - Wang, L. - Zhang, J. R. - Harik Issam, E. (2019) Corrosion fatigue crack propagation mechanism of high strength steel bar in various environments. Journal of Materials in Civil Engineering. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003165
  28. Heikal, M. - El Aleem, S. A. - Morsi, W. M. (2013) Characteristics of blended cements containing nano-silica. HBRC Journal, Vol. 9, No. 3, pp. 243-255. https://doi.org/10.1016/j.hbrcj.2013.09.001
  29. Huang, Y. - Wang, L. (2016) Microscopic characteristics of nanoparticles for seismic liquefaction mitigation. Japanese Geotechnical Society Special Publication, Vol. 2, No. 5, pp. 273-276. https://doi.org/10.3208/jgssp.CHN-08
  30. Ibrahim, M. - Yusak, M. - Ramadhansyah, P. J. - Ibrahim, M. - Fadzliet, M. N. (2015) Utilization of nano silica as cement paste in mortar and porous concrete pavement. Advanced Materials Research. Trans Tech Publications, Vol. 1113, pp. 135-139. https://doi.org/10.4028/www.scientific.net/AMR.1113.135
  31. Kaehler, T. (1994) Nanotechnology: Basic concepts and definitions. Clinical Chemistry, Vol. 40, No. 9, pp. 1797-1799. https://doi.org/10.1093/clinchem/40.9.1797
  32. Kazemian, S. - Huat, B. B. K. - Arun, P. - Barghchi, M. (2010) A review of stabilization of soft soils by injection of chemical grouting. Australian Journal of Basic and Applied Sciences, Vol. 4, No. 12, pp. 5862-5868.
  33. Kulkarni, P. P. - Mandal, J. N. (2017) Performance assessment of stabilized soil with fly ash- nano material mixes. Journal of Geotechnical and Transportation Engineering, Vol. 3, No. 2, pp. 35-46.
  34. Kumar, A. - Devi, K. (2022) Nano-Silica Concrete: Prospective and Challenges. 10th National Conference on Nanoscience and Instrumentation Technology, 2022, NIT Kurukshetra, India.
  35. Kumar, A. - Devi, K. (2023) Application of Nanotechnology in Soil Stabilization. Journal of Building Material Science, Vol. 5, No. 2, pp. 25-36. https://doi.org/10.30564/jbms.v5i2.5913
  36. Lead, J. R. - Batley, G. E. - Alvarez, P. J. J. - Croteau, N. M. - Handy, R. D. - McLaughlin, M. J. - Judy, J. D. - Schirmer, K. (2018) Nano-materials in the environment: Behavior, fate, bioavailability, and effects-An updated review. Environmental Toxicology and Chemistry, Vol. 37, No. 8, pp. 2029-2063. https://doi.org/10.1002/etc.4147
  37. Lin, D. F. - Luo, H. L. - Hsiao, D. H. - Chen, C. T. - Cai, M. D. (2016) Enhancing soft subgrade soil with a sewage sludge ash/cement mixture and nano-silicon dioxide. Environmental Earth Sciences, Vol. 75, No. 7, pp. 1-11. https://doi.org/10.1007/s12665-016-5432-9
  38. Liu, Q. - Gonzalez, M. - Tighe, S. L. - Shalaby, A. (2018) Three-dimensional surface texture of Portland cement concrete pavements containing nanosilica. International Journal of Pavement Engineering, Vol. 19, No. 11, pp. 999-1006.https://doi.org/10.1080/10298436.2016.1231520
  39. Luo, H. - Scriven, L. E. - Francis, L. F. (2007) Cryo-SEM studies of latex/ceramic nanoparticle coating microstructure development. Journal of Colloid and Interface Science, Vol. 316, No. 2, pp. 500-509. https://doi.org/10.1016/j.jcis.2007.07.047
  40. Lv, Q. F. - Chang, C. R. - Zhao, B. H. - Ma, B. (2018) Loess soil stabilization by means of SiO2 nanoparticles. Soil Mechanics and Foundation Engineering, Vol. 54, No. 6, pp. 409-413. https://doi.org/10.1007/s11204-018-9488-2
  41. Meng, T. - Qiang, Y. - Hu, A. - Xu, C. T. - Lin, L. (2017) Effect of compound nano-CaCO3 addition on strength development and microstructure of cement-stabilized soil in the marine environment. Construction and Building Materials, Vol. 151, pp. 775-781. https://doi.org/10.1016/j.conbuildmat.2017.06.016
  42. Mohtar, C. S. E. - Bobet, A. - Santagata, M. C. - Drnevich, V. P. - Johnston, C. T. (2013) Liquefaction mitigation using bentonite suspensions. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 139, No. 8, pp. 1369-1380. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000865
  43. Pacheco-Torgal, F. - Miraldo, S. - Ding, Y. - Labrincha, J. A. (2013) Targeting HPC with the help of nanoparticles: An overview. Construction and Building Materials, Vol. 38, pp. 365-370. https://doi.org/10.1016/j.conbuildmat.2012.08.013
  44. Polat, R. - Demirboga, R. - Karagöl, F. (2017) The effect of nanoMgO on the setting time, autogenous shrinkage, microstructure and mechanical properties of high-performance cement paste and mortar. Construction and Building Materials, Vol. 156, pp. 208-218. https://doi.org/10.1016/j.conbuildmat.2017.08.168
  45. Pusadkar, S. - Bakhade, S. - Dhatrak, A. I. (2017) Effect of nanocopper on performance of black cotton soil. Journal of Engineering Research and Application, Vol. 7, No. 6, pp. 34-39. https://doi.org/10.9790/9622-0706073439
  46. Rao, N. V. - Rajasekhar, M. - Vijayalakshmi, K. - Vamshykrishna, M. (2015) The future of civil engineering with the influence and impact of nanotechnology on properties of materials. Procedia Materials Science, Vol. 10, pp. 111-115. https://doi.org/10.1016/j.mspro.2015.06.032
  47. Roco, M. C. (2005) International perspective on government nanotechnology funding in 2005. Journal of Nanoparticle Research, Vol. 7, pp. 707-712. https://doi.org/10.1007/s11051-005-3141-5
  48. Saltan, M. - Terzi, S. - Karahancer, S. (2017) Examination of hot mix asphalt and binder performance modified with nano silica. Construction and Building Materials, Vol. 156, pp. 976-984. https://doi.org/10.1016/j.conbuildmat.2017.09.069
  49. Saltan, M. - Terzi, S. - Karahancer, S. (2018) Performance analysis of nano modified bitumen and hot mix asphalt. Construction and Building Materials, Vol. 173, pp. 228-237. https://doi.org/10.1016/j.conbuildmat.2018.04.014
  50. Shao, W. - Yue, W. - Zhang, Y. - Zhou, T. - Zhang, Y. - Dang, Y. - Wang, H. - Feng, X. - Chao, Z. (2023) The Application of Machine Learning Techniques in Geotechnical Engineering: A Review and Comparison. Mathematics, Vol. 11, No. 18, 3976. https://doi.org/10.3390/math11183976
  51. Singh, L. P. - Ali, D. - Tyagi, I. (2019) Durability studies of nano-engineered fly ash concrete. Construction and Building Materials, Vol. 194, pp. 205-215. https://doi.org/10.1016/j.conbuildmat.2018.11.022
  52. Sobolev, K. - Gutiérrez, M. F. (2005) How nanotechnology can change the concrete world. American Ceramic Society Bulletin, Vol. 84, No. 10, pp. 14-18.
  53. Taha, M. R. - Taha, O. M. E. (2012) Influence of nano-material on the expansive and shrinkage soil behavior. Journal of Nanoparticle Research, Vol. 14, No. 10, pp. 1-13. https://doi.org/10.1007/s11051-012-1190-0
  54. Taha, M. R. - Jamal, M. A. (2018) Performance of soil stabilized with carbon nanomaterials. Chemical Engineering Transactions, Vol. 63, pp. 757-762.
  55. Thapa, I. - Ghani, S. - Kumari, S. - Choudhary, A. K. - Sivenas, T. - Asteris, P. G. (2025) Geotechnical Characterization and Stability Prediction of Nano‑Silica‑Stabilized Slopes: A Machine Learning Approach to Mitigating Geological Hazards. Transportation Infrastructure Geotechnology, Vol. 12, Article 89. https://doi.org/10.1007/s40515-025-00553-4
  56. Thapa, I. - Ghani, S. (2025) Nano-silica and machine learning-based soil stabilization: Advancing sustainable and clean technologies for resilient infrastructure. Progress in Engineering Science, Vol. 2, No. 4. https://doi.org/10.1016/j.pes.2025.100131
  57. Wang, H. - Zhong, J. - Feng, D. - Meng, J. - Xie, N. (2013) Nanoparticles-modified polymer- based solar reflective coating as a cooling overlay for asphalt pavement. International Journal of Smart and Nano Materials, Vol. 4, No. 2, pp. 102-111. https://doi.org/10.1080/19475411.2012.714808
  58. White, P. J. - Brown, P. H. (2010) Plant nutrition for sustainable development and global health. Annals of Botany, Vol. 105, No. 7, pp. 1073-1080. https://doi.org/10.1093/aob/mcq085
  59. Yang, J. - Tighe, S. (2013) A review of advances of nanotechnology in asphalt mixtures. Procedia-Social and Behavioral Sciences, Vol. 96, pp. 1269-1276. https://doi.org/10.1016/j.sbspro.2013.08.144
  60. Yao, H. - Dai, Q. - You, Z. (2015) Chemo-physical analysis and molecular dynamics (MD) simulation of moisture susceptibility of nano hydrated lime modified asphalt mixtures. Construction and Building Materials, Vol. 101, pp. 536-547. https://doi.org/10.1016/j.conbuildmat.2015.10.087
  61. Yao, H. - Dai, Q. - You, Z. (2015) Fourier transform infrared spectroscopy characterization of aging-related properties of original and nano-modified asphalt binders. Construction and Building Materials, Vol. 101, pp. 1078-1087. https://doi.org/10.1016/j.conbuildmat.2015.10.085
  62. Yao, K. - Wang, W. - Li, N. - Zhang, C. - Wang, L. X. (2019) Investigation on strength and microstructure characteristics of nano-MgO admixed with cemented soft soil. Construction and Building Materials, Vol. 206, pp. 160-168. https://doi.org/10.1016/j.conbuildmat.2019.01.221
  63. You, Z. - Mills-Beale, J. - Foley, J. M. - Roy, S. - Odegard, G. M. - Dai, Q. L. - Goh, S. W. (2011) Nanoclay-modified asphalt materials: Preparation and characterization. Construction and Building Materials, Vol. 25, No. 2, pp. 1072-1078. https://doi.org/10.1016/j.conbuildmat.2010.06.070
  64. Yousif, R. A. - Abed, H. M. (2025) The effect of nanomaterials on the rheological properties of asphalt binder. Engineering, Technology & Applied Science Research, Vol. 15, No. 2, pp. 21366-21372. https://doi.org/10.48084/etasr.10058
  65. Yusak, M. I. M. - Jaya, R. P. - Rosli, M. (2006) A review of microstructure properties of porous concrete pavement incorporating nano silica. ARPN Journal of Engineering and Applied Sciences, Vol. 11, No. 20, pp. 11832-11835.
  66. Zahedi, M. - Sharifipour, M. - Jahanbakhshi, F. - Bayat, R. (2014) Nanoclay performance on resistance of clay under freezing cycles. Journal of Applied Sciences and Environmental Management, Vol. 18, No. 3, pp. 427-434.
  67. Zeng, L. - Bian, H. B. - Shi, Z. N. - He, Z. M. (2017) Forming condition of transient saturated zone and its distribution in residual slope under rainfall conditions. Journal of Central South University, Vol. 24, No. 8, pp. 1866-1880. https://doi.org/10.1007/s11771-017-3594-6
  68. Zeng, L. - Ye, J. Y. - Zhang, J. H. (2019) A promising SPEEK/MCM composite membrane for highly efficient vanadium redox flow battery. Surface & Coatings Technology, Vol. 358, pp. 167-172. https://doi.org/10.1016/j.surfcoat.2018.11.018
  69. Zhang, C. - Fu, J. Y. - Yang, J. S. - Ou, X. F. - Ye, X. T. - Zhang, Y. (2018) Formulation and performance of grouting materials for underwater shield tunnel construction in karst ground. Construction and Building Materials, Vol. 187, pp. 327-338. https://doi.org/10.1016/j.conbuildmat.2018.07.054
  70. Zhang, C. - Yang, J. S. - Ou, X. F. - Fu, J. Y. - Xie, Y. P. - Liang, X. (2018) Clay dosage and water/cement ratio of clay-cement grout for optimal engineering performance. Applied Clay Science, Vol. 163, pp. 312-318. https://doi.org/10.1016/j.clay.2018.07.035
  71. Zhang, G. - Liu, J. - Li, Y. - Liang, J. W. (2017) A pasty claycement grouting material for soft and loose ground underground water conditions. Advances in Cement Research, Vol. 29, No. 1, pp. 1-9. https://doi.org/10.1680/jadcr.16.00079
  72. Zhang, J. H. - Peng, J. H. - Li, J. - Yao, Y. S. - Zhang, A. S. (2020) Modeling humidity and stress dependent subgrade soils in flexible pavements. Computers and Geotechnics,
  73. Zhang, J. H. - Peng, J. H. - Liu, W. Z. - Lu, W. H. (2019) Predicting resilient modulus considering relative compaction and matric suction of compacted subgrade soils. Road Materials and Pavement Design. https://doi.org/10.1080/14680629.2019.1651756
  74. Zhang, X. - Gao, J. - Qiang, M. - Zhang, H. - Li, X. - Long, S. - Gao, Z. - Fan, H. (2023) Mechanical Characterization and Constitutive Modeling of Nano Stabilized Soil under Uniaxial Compression. Materials, Vol. 16, No. 4, 1488. https://doi.org/10.3390/ma16041488
  75. Ziari, H. - Behbahani, H. - Kamboozia, N. - Ameri, M. (2015) New achievements on positive effects of nanotechnology zyco-soil on rutting resistance and stiffness modulus of glasphalt mix. Construction and Building Materials, Vol. 101, pp. 752-760. https://doi.org/10.1016/j.conbuildmat.2015.10.150