Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 1 (2025)

A Cloud Database for Data-Driven and Intelligent Analysis of Slopes: Development and Application in Hubei Province, China

Submitted
September 10, 2025
Published
2025-09-10

Abstract

This study developed a cloud-based slope database system for Hubei Province, China, leveraging extensive existing engineering data to establish a foundational platform for data-driven and intelligent computational methods in slope engineering. The system employs MySQL as the backend database management system and adopts a Browser/Server (B/S) architecture, enabling deployment and operation in both local and cloud server environments. It supports remote data operations, including addition, deletion, modification, and query, as well as one-click export functionality. Currently, the cloud database contains 1,700 slope records from Hubei Province, comprising 34,863 data entries, covering engineering geological characteristics, stability analysis results, mitigation measures, and monitoring data for slopes along multiple national and provincial highways. Taking the deterministic identification of rock uniaxial compressive strength (UCS) as an example, empirical formulas for estimating the UCS for various rock types in the database are proposed. It demonstrates that the cloud database can provide a data foundation for engineering treatment of slopes.

References

  1. DAI Rui, J.J., Wanliang WANG, Qianlin YE, Fei WU, Review of data-driven intelligent computation and its application. Journal of Zhejiang University (Engineering Science), 2025. 59(2): p. 227-248.
  2. Xu, Z. and J. Sun, Model-driven deep-learning. National Science Review, 2018. 5(1): p. 22-24.https://doi.org/10.1093/nsr/nwx099
  3. Zheng, S., et al., Toward Next-Generation Signal Intelligence: A Hybrid Knowledge and Data-Driven Deep Learning Framework for Radio Signal Classification. IEEE Transactions on Cognitive Communications and Networking, 2023. 9(3): p. 564-579. https://doi.org/10.1109/TCCN.2023.3243899
  4. Herrera, G., et al., Landslide databases in the Geological Surveys of Europe. Landslides, 2018. 15(2): p. 359-379. https://doi.org/10.1007/s10346-017-0902-z
  5. Zhou, J., et al., Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories. Safety Science, 2019. 118: p. 505-518.https://doi.org/10.1007/s10346-017-0902-z
  6. Zhang, S., et al., Fatal landslides in China from 1940 to 2020: occurrences and vulnerabilities. Landslides, 2023. 20(6): p. 1243-1264.https://doi.org/10.1007/s10346-023-02034-6
  7. Harp, E.L., et al., Landslide inventories: The essential part of seismic landslide hazard analyses. Engineering Geology, 2011. 122(1-2): p. 9-21.https://doi.org/10.1016/j.enggeo.2010.06.013
  8. Rosser, B., et al., New Zealand’s National Landslide Database. Landslides, 2017. 14(6).https://doi.org/10.1007/s10346-017-0843-6
  9. Ownegh, M. Assessing the applicability of Australian landslide databases for hazard management. in Proceedings of ISCO. 2004. Brisbane.
  10. Read, J. and P. Stacey, Guidelines for Open Pit Slope Design, ed. J. Read and P. Stacey. 2009: CSIRO Publishing. 511.https://doi.org/10.1071/9780643101104
  11. Jaupaj, O., et al. Landslide Inventory Map of Albania. in Advancing Culture of Living with Landslides. 2017. Cham: Springer International Publishing.https://doi.org/10.1007/978-3-319-53498-5_5
  12. Van Den Eeckhaut, M., J. Hervás, and L. Montanarella, Landslide Databases in Europe: Analysis and Recommendations for Interoperability and Harmonisation, in Landslide Science and Practice: Volume 1: Landslide Inventory and Susceptibility and Hazard Zoning, M. Van Den Eeckhaut, J. Hervás, and L. Montanarella, Editors. 2013, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 35-42.https://doi.org/10.1007/978-3-642-31325-7_4
  13. Van Den Eeckhaut, M. and J. Hervás, State of the art of national landslide databases in Europe and their potential for assessing landslide susceptibility, hazard and risk. Geomorphology, 2012. 139: p. 545-558.https://doi.org/10.1016/j.geomorph.2011.12.006
  14. Tilch, N., et al., The Data Management System GEORIOS of the Geological Survey of Austria (GBA), N. Tilch, et al., Editors. 2011, Interdisciplinary Rockfall Workshop.
  15. Mancini, F., F. Stecchi, and G. Gabbianelli, GIS-based assessment of risk due to salt mining activities at Tuzla (Bosnia and Herzegovina). Engineering Geology, 2009. 109(3): p. 170-182.https://doi.org/10.1016/j.enggeo.2009.06.018
  16. Berov, B. and N. Dobrev, Landslides in Bulgaria. Journal of the Japan Landslide Society, 2002. 38: p. 34-43.
  17. Milevski, I. and S. Dragicevic, GIS-Based Landslide Susceptibility Modelling of the Territory of the Republic of Macedonia, in 7th International Conference on Cartography and GIS, I. Milevski and S. Dragicevic, Editors. 2018. p. 82-91.
  18. Grislain-Letrémy, C. and C. Peinturier, The Insured Cost of Ground Movements in France from 1995 to 2006. SSRN Electronic Journal, 2014.https://doi.org/10.2139/ssrn.2457200
  19. Damm, B. and M. Klose, The landslide database for Germany: Closing the gap at national level. Geomorphology, 2015. 249: p. 82-93.https://doi.org/10.1016/j.geomorph.2015.03.021
  20. Gerzsenyi, D. and G. Albert, Landslide inventory validation and susceptibility mapping in the Gerecse Hills, Hungary. Geo-spatial Information Science, 2021. 24(3): p. 498-508.https://doi.org/10.1080/10095020.2020.1870872
  21. Trigila, A., C. Iadanza, and D. Spizzichino, Quality assessment of the Italian Landslide Inventory using GIS processing. Landslides, 2010. 7(4): p. 455-470.https://doi.org/10.1007/s10346-010-0213-0
  22. Guzzetti, F., M. Cardinali, and P. Reichenbach, The AVI project: A bibliographical and archive inventory of landslides and floods in Italy. Environmental Management, 1994. 18(4): p. 623-633.https://doi.org/10.1007/BF02400865
  23. Hermanns, R., et al. Systematic geological mapping for landslide understanding in the Norwegian context. in Landslide and engineered slopes: protecting society through improved understanding. 2013. Taylor & Francis Group.
  24. Mrozek, T., et al. Landslide Counteracting System (SOPO): Inventory Database of Landslides in Poland. in Landslide Science for a Safer Geoenvironment. 2014. Cham: Springer International Publishing.https://doi.org/10.1007/978-3-319-05050-8_126
  25. Zêzere, J.L., et al., DISASTER: a GIS database on hydro-geomorphologic disasters in Portugal. Natural Hazards, 2014. 72(2): p. 503-532.https://doi.org/10.1007/s11069-013-1018-y
  26. Bednarik, M. and P. Pauditš, Different ways of landslide geometry interpretation in a process of statistical landslide susceptibility and hazard assessment: Horná Súča (western Slovakia) case study. Environmental Earth Sciences, 2010. 61(4): p. 733-739.https://doi.org/10.1007/s12665-009-0387-8
  27. Marko, K., R. Damijan, and R. Mihael, Slovenian National Landslide DataBase – A promising approach to slope mass movement prevention plan. Geologija, 2007. 50(2): p. 393-402.https://doi.org/10.5474/geologija.2007.027
  28. Göransson, G.I., D. Bendz, and P.M. Larson, Combining landslide and contaminant risk: a preliminary assessment. Journal of Soils and Sediments, 2009. 9(1): p. 33-45.https://doi.org/10.1007/s11368-008-0035-z
  29. Raetzo, H., et al., Hazard assessment in Switzerland – Codes of Practice for mass movements. Bulletin of Engineering Geology and the Environment, 2002. 61(3): p. 263-268.https://doi.org/10.1007/s10064-002-0163-4
  30. Foster, C., et al., The national landslide database of Great Britain: development, evolution and applications. Environmental Earth Sciences, 2012. 66(3): p. 941-953.https://doi.org/10.1007/s12665-011-1304-5
  31. Popescu, M. and C.o.L.R. International Union of Geological Sciences Working Group on Landslides, A suggested method for reporting landslide remedial measures. Bulletin of Engineering Geology and the Environment, 2001. 60(1): p. 69-74.https://doi.org/10.1007/s100640000084
  32. Xu, Y., et al., CAS Landslide Dataset: A Large-Scale and Multisensor Dataset for Deep Learning-Based Landslide Detection. Scientific Data, 2024. 11(1): p. 12.https://doi.org/10.1038/s41597-023-02847-z
  33. Wubalem, A., Landslide Inventory, Susceptibility, Hazard and Risk Mapping, in Landslides, Y. Zhang and Q. Cheng, Editors. 2021, IntechOpen: Rijeka.https://doi.org/10.5772/intechopen.100504
  34. SU, X., et al., A dataset of catalog and characteristics of landslides along the China-Pakistan Karakoram Highway. China Scientific Data, 2022. 7(2).https://doi.org/10.11922/11-6035.csd.2022.0007.zh
  35. He, Q., et al., Evaluation of landslide susceptibility of mountain highway based on RF and SVM models. Scientific Reports, 2025. 15(1): p. 24991.https://doi.org/10.1038/s41598-025-08774-w
  36. Liu, Y., et al. Chinese High Resolution Satellite Data and GIS-Based Assessment of Landslide Susceptibility along Highway G30 in Guozigou Valley Using Logistic Regression and MaxEnt Model. Remote Sensing, 2022. 14.https://doi.org/10.3390/rs14153620
  37. Liu, Y., et al., Displacement-Based Back-Analysis Frameworks for Soil Parameters of a Slope: Using Frequentist Inference and Bayesian Inference. International Journal of Geomechanics, 2022. 22(4): p. 04022026.https://doi.org/10.1061/(ASCE)GM.1943-5622.0002318
  38. Wu, T., et al., Lithospheric structure of Hubei Province, central China, from Rayleigh wave tomography: insight into the spatial contact relationship between the Yangtze Plate and the eastern Qinling-Dabie orogenic belt. Geophysical Journal International, 2020. 221(3): p. 1669-1683.https://doi.org/10.1093/gji/ggaa102
  39. Huawei Technologies Co, L., Database Design Fundamentals, in Database Principles and Technologies – Based on Huawei GaussDB, L. Huawei Technologies Co, Editor. 2023, Springer Nature Singapore: Singapore. p. 245-285.https://doi.org/10.1007/978-981-19-3032-4_7
  40. Lightstone, S.S., Physical Database Design for Relational Databases, in Encyclopedia of Database Systems, L. Liu and M.T. ÖZsu, Editors. 2009, Springer US: Boston, MA. p. 2108-2114.https://doi.org/10.1007/978-0-387-39940-9_644
  41. Hollander, M., D.A. Wolfe, and E. Chicken, Nonparametric statistical methods. 2013: John Wiley & Sons.